Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 23(12): e55839, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36268590

RESUMO

ZBP1 is an interferon-induced cytosolic nucleic acid sensor that facilitates antiviral responses via RIPK3. Although ZBP1-mediated programmed cell death is widely described, whether and how it promotes inflammatory signaling is unclear. Here, we report a ZBP1-induced inflammatory signaling pathway mediated by K63- and M1-linked ubiquitin chains, which depends on RIPK1 and RIPK3 as scaffolds independently of cell death. In human HT29 cells, ZBP1 associated with RIPK1 and RIPK3 as well as ubiquitin ligases cIAP1 and LUBAC. ZBP1-induced K63- and M1-linked ubiquitination of RIPK1 and ZBP1 to promote TAK1- and IKK-mediated inflammatory signaling and cytokine production. Inhibition of caspase activity suppressed ZBP1-induced cell death but enhanced cytokine production in a RIPK1- and RIPK3 kinase activity-dependent manner. Lastly, we provide evidence that ZBP1 signaling contributes to SARS-CoV-2-induced cytokine production. Taken together, we describe a ZBP1-RIPK3-RIPK1-mediated inflammatory signaling pathway relayed by the scaffolding role of RIPKs and regulated by caspases, which may induce inflammation when ZBP1 is activated below the threshold needed to trigger a cell death response.


Assuntos
Morte Celular , Proteínas de Ligação a RNA , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Citocinas , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais , Ubiquitina , Proteínas de Ligação a RNA/genética , Células HT29 , Inflamação
2.
Nat Commun ; 13(1): 4760, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963852

RESUMO

Lineage plasticity of prostate cancer is associated with resistance to androgen receptor (AR) pathway inhibition (ARPI) and supported by a reactive tumor microenvironment. Here we show that changes in chondroitin sulfate (CS), a major glycosaminoglycan component of the tumor cell glycocalyx and extracellular matrix, is AR-regulated and promotes the adaptive progression of castration-resistant prostate cancer (CRPC) after ARPI. AR directly represses transcription of the 4-O-sulfotransferase gene CHST11 under basal androgen conditions, maintaining steady-state CS in prostate adenocarcinomas. When AR signaling is inhibited by ARPI or lost during progression to non-AR-driven CRPC as a consequence of lineage plasticity, CHST11 expression is unleashed, leading to elevated 4-O-sulfated chondroitin levels. Inhibition of the tumor cell CS glycocalyx delays CRPC progression, and impairs growth and motility of prostate cancer after ARPI. Thus, a reactive CS glycocalyx supports adaptive survival and treatment resistance after ARPI, representing a therapeutic opportunity in patients with advanced prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Androgênios , Sulfatos de Condroitina , Glicocálix/metabolismo , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Transdução de Sinais , Microambiente Tumoral
3.
Sci Rep ; 12(1): 3075, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197518

RESUMO

Proteoglycans are proteins that are modified with glycosaminoglycan chains. Chondroitin sulfate proteoglycans (CSPGs) are currently being exploited as targets for drug-delivery in various cancer indications, however basic knowledge on how CSPGs are internalized in tumor cells is lacking. In this study we took advantage of a recombinant CSPG-binding lectin VAR2CSA (rVAR2) to track internalization and cell fate of CSPGs in tumor cells. We found that rVAR2 is internalized into cancer cells via multiple internalization mechanisms after initial docking on cell surface CSPGs. Regardless of the internalization pathway used, CSPG-bound rVAR2 was trafficked to the early endosomes in an energy-dependent manner but not further transported to the lysosomal compartment. Instead, internalized CSPG-bound rVAR2 proteins were secreted with exosomes to the extracellular environment in a strictly chondroitin sulfate-dependent manner. In summary, our work describes the cell fate of rVAR2 proteins in tumor cells after initial binding to CSPGs, which can be further used to inform development of rVAR2-drug conjugates and other therapeutics targeting CSPGs.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Lectinas/metabolismo , Neoplasias/metabolismo , Transporte Proteico , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Endossomos/metabolismo , Exossomos/metabolismo , Humanos , Ligação Proteica , Proteínas Recombinantes/metabolismo
4.
EMBO Mol Med ; 8(7): 761-78, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27198502

RESUMO

Clusterin (CLU) is a stress-activated molecular chaperone that confers treatment resistance to taxanes when highly expressed. While CLU inhibition potentiates activity of taxanes and other anti-cancer therapies in preclinical models, progression to treatment-resistant disease still occurs implicating additional compensatory survival mechanisms. Taxanes are believed to selectively target cells in mitosis, a complex mechanism controlled in part by balancing antagonistic roles of Cdc25C and Wee1 in mitosis progression. Our data indicate that CLU silencing induces a constitutive activation of Cdc25C, which delays mitotic exit and hence sensitizes cancer cells to mitotic-targeting agents such as taxanes. Unchecked Cdc25C activation leads to mitotic catastrophe and cell death unless cells up-regulate protective mechanisms mediated through the cell cycle regulators Wee1 and Cdk1. In this study, we show that CLU silencing induces a constitutive activation of Cdc25C via the phosphatase PP2A leading to relief of negative feedback inhibition and activation of Wee1-Cdk1 to promote survival and limit therapeutic efficacy. Simultaneous inhibition of CLU-regulated cell cycle effector Wee1 may improve synergistic responses of biologically rational combinatorial regimens using taxanes and CLU inhibitors.


Assuntos
Antineoplásicos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Proliferação de Células/efeitos dos fármacos , Clusterina/metabolismo , Mitose/efeitos dos fármacos , Neoplasias da Próstata/patologia , Taxoides/farmacologia , Linhagem Celular Tumoral , Clusterina/genética , Técnicas de Silenciamento de Genes , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...