Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2023: 4143633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817860

RESUMO

Stroke seriously affects human health. Many studies have shown that enriched environment (EE) can promote functional recovery after stroke, but the intrinsic mechanisms remain unclear. In order to study the internal mechanisms of EE involved in functional recovery after ischemic stroke and which mechanism plays a leading role in the recovery of limb function after cerebral infarction, key proteins potentially involved in neuronal protection and synaptic remodeling in the ischemic penumbra have been investigated. In this study, adult C57BL/6 mice after permanent middle cerebral artery occlusion (pMCAO) were assigned to the EE and standard housing (SH) groups 3 days after operation. The EE house was spacious that contained a large variety of small toys; the SH was a normal sized cage. Sham-operated mice without artery occlusion were housed under standard conditions and were fed a normal diet. On days 3, 7, 14, and 21, postoperative motor functional recovery was tested using the modified neurological severity score (mNSS) and the Rotarod test. The expression of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), growth-associated protein-43 (GAP-43), and synaptophysin (SYN) was examined by western blotting and immunofluorescence staining. The motor functional recovery (based on the mNSS and Rotarod test 3, 7, 14, and 21 days post operation) of mice in the EE group improved significantly compared to the SH group. The expression of GAP-43 and SYN and the ratio of Bcl-2/Bax were all upregulated in the EE group compared to the SH group. In addition, we also explored the relationship between neuronal protection and synaptic remodeling in the EE-mediated recovery of limb function after cerebral infarction by correlation analysis. Correlation analysis showed that compared with the increase of Bcl-2/Bax ratio, the increased expression of GAP-43 and SYN was more closely related to the recovery of limb function in ischemic mice. These data support the hypothesis that EE can promote the process of improvement of limb dysfunction induced by ischemic stroke, and this behavior restoration may, via promoting neuroprotection in the ischemic penumbra, be dependent on the regulation of the expression of GAP-43, SYN, Bcl-2, and Bax. A limitation of the study was that we only observed several representative key indicators of synaptic remodeling and neuronal apoptosis, without an in-depth study of the potential mechanisms involved.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Neuroproteção , Proteína X Associada a bcl-2 , Proteína GAP-43 , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média , Modelos Animais de Doenças
2.
Mediators Inflamm ; 2022: 2396487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795405

RESUMO

Background: Enriched environment (EE) can protect the brain against damages caused by an ischemic stroke; however, the underlying mechanism remains elusive. Autophagy and mitochondria quality control are instrumental in the pathogenesis of ischemic stroke. In this study, we investigated whether and how autophagy and mitochondria quality control contribute to the protective effect of EE in the acute phase of cerebral ischemia-reperfusion injury. Methods: We exposed transient middle cerebral artery occlusion (tMCAO) mice to EE or standard condition (SC) for 7 days and then studied them for neurological deficits, autophagy and inflammation-related proteins, and mitochondrial morphology and function. Results: Compared to tMCAO mice in the SC group, those in the EE group showed fewer neurological deficits, relatively downregulated inflammation, higher LC3 expression, higher mitochondrial Parkin levels, higher mitochondrial fission factor dynamin-related protein-1 (Drp1) levels, lower p62 expression, and lower autophagy inhibitor mTOR expression. Furthermore, we found that the EE group showed a higher number of mitophagosomes and normal mitochondria, fewer mitolysosomes, and relatively increased mitochondrial membrane potential. Conclusion: These results suggested that EE enhances autophagy flux by inhibiting mTOR and enhances mitophagy flux via recruiting Drp1 and Parkin to eliminate dysfunctional mitochondria, which in turn inhibits inflammation and alleviates neurological deficits. Limitations. The specific mechanisms through which EE promotes autophagy and mitophagy and the signaling pathways that link them with inflammation need further study.


Assuntos
AVC Isquêmico , Traumatismo por Reperfusão , Animais , Autofagia , Infarto da Artéria Cerebral Média/metabolismo , Inflamação , Camundongos , Mitofagia , Neuroproteção , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia , Serina-Treonina Quinases TOR , Ubiquitina-Proteína Ligases/metabolismo
3.
Neural Regen Res ; 16(8): 1460-1466, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33433459

RESUMO

Currently, no specific treatment exists to promote recovery from cognitive impairment after a stroke. Dysfunction of the actin cytoskeleton correlates well with poststroke cognitive declines, and its reorganization requires proper regulation of Rho-associated kinase (ROCK) proteins. Fasudil downregulates ROCK activation and protects neurons against cytoskeleton collapse in the acute phase after stroke. An enriched environment can reduce poststroke cognitive impairment. However, the efficacy of environmental enrichment combined with fasudil treatment remains poorly understood. A photothrombotic stroke model was established in 6-week-old male C57BL/6 mice. Twenty-four hours after modeling, these animals were intraperitoneally administered fasudil (10 mg/kg) once daily for 14 successive days and/or provided with environmental enrichment for 21 successive days. After exposure to environmental enrichment combined with fasudil treatment, the number of neurons in the hippocampal CA1 region increased significantly, the expression and proportion of p-cofilin in the hippocampus decreased, and the distribution of F-actin in the hippocampal CA1 region increased significantly. Furthermore, the performance of mouse stroke models in the tail suspension test and step-through passive avoidance test improved significantly. These findings suggest that environmental enrichment combined with fasudil treatment can ameliorate memory dysfunction through inhibition of the hippocampal ROCK/cofilin pathway, alteration of the dynamic distribution of F-actin, and inhibition of neuronal death in the hippocampal CA1 region. The efficacy of environmental enrichment combined with fasudil treatment was superior to that of fasudil treatment alone. This study was approved by the Animal Ethics Committee of Fudan University of China (approval No. 2019-Huashan Hospital JS-139) on February 20, 2019.

4.
Neural Regen Res ; 15(9): 1671-1677, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32209771

RESUMO

Many studies have shown that fibronectin type III domain-containing protein 5 (FDNC5) and brain-derived neurotrophic factor (BDNF) play vital roles in plasticity after brain injury. An enriched environment refers to an environment that provides animals with multi-sensory stimulation and movement opportunities. An enriched environment has been shown to promote the regeneration of nerve cells, synapses, and blood vessels in the animal brain after cerebral ischemia; however, the exact mechanisms have not been clarified. This study aimed to determine whether an enriched environment could improve neurobehavioral functions after the experimental inducement of cerebral ischemia and whether neurobehavioral outcomes were associated with the expression of FDNC5 and BDNF. This study established ischemic mouse models using permanent middle cerebral artery occlusion (pMCAO) on the left side. On postoperative day 1, the mice were randomly assigned to either enriched environment or standard housing condition groups. Mice in the standard housing condition group were housed and fed under standard conditions. Mice in the enriched environment group were housed in a large cage, containing various toys, and fed with a standard diet. Sham-operated mice received the same procedure, but without artery occlusion, and were housed and fed under standard conditions. On postoperative days 7 and 14, a beam-walking test was used to assess coordination, balance, and spatial learning. On postoperative days 16-20, a Morris water maze test was used to assess spatial learning and memory. On postoperative day 15, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex were analyzed by western blot assay. The results showed that compared with the standard housing condition group, the motor balance and coordination functions (based on beam-walking test scores 7 and 14 days after operation), spatial learning abilities (based on the spatial learning scores from the Morris water maze test 16-19 days after operation), and memory abilities (based on the memory scores of the Morris water maze test 20 days after operation) of the enriched environment group improved significantly. In addition, the expression levels of FDNC5 and BDNF proteins in the ipsilateral cerebral cortex increased in the enriched environment group compared with those in the standard housing condition group. Furthermore, the Pearson correlation coefficient showed that neurobehavioral functions were positively associated with the expression levels of FDNC5 and BDNF (r = 0.587 and r = 0.840, respectively). These findings suggest that an enriched environment upregulates FDNC5 protein expression in the ipsilateral cerebral cortex after cerebral ischemia, which then activates BDNF protein expression, improving neurological function. BDNF protein expression was positively correlated with improved neurological function. The experimental protocols were approved by the Institutional Animal Care and Use Committee of Fudan University, China (approval Nos. 20160858A232, 20160860A234) on February 24, 2016.

5.
Aging Dis ; 10(3): 530-543, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31164998

RESUMO

The level of cerebellar activity in stroke patients has been shown to correlate with the extent of functional recovery. We reasoned that the cerebellum may be an important player in post-stroke rehabilitation. Because the neurons in the deep cerebellar nuclei (DCN) represent virtually all of the output from the cerebellum, in this study, using environmental enrichment (EE) to promote rehabilitation, we investigated the influence of the optogenetic neuronal modulation of DCN on EE-induced rehabilitation. We found that neuronal inhibition of the DCN almost completely blocked motor recovery in EE treated mice, but the stroke mice with neuronal activation of the DCN achieved a similar recovery level as those in the EE treated group. No difference was observed in anxiety-like behavior. Moreover, Htr2a in the DCN, the gene encoding 5-HT2A receptor, was shown to be a hub gene in the protein-protein interaction network identified using RNA-seq. This indicated that 5-HT2A receptor-mediated signaling may be responsible for DCN-dependent functional improvement in EE. We further verified this using the 5-HT2A receptor antagonist, MDL100907, to inhibit the function of 5-HT2A receptor in the DCN. This treatment resulted in impaired recovery in EE treated mice, who performed at a level as poor as the stroke-only group. Thus, this work contributes to an understanding of the importance of the DCN activation in EE-induced post-stroke rehabilitation. Attempts to clarify the mechanism of 5-HT2A receptor-mediated signaling in the DCN may also lead to the creation of a pharmacological mimetic of the benefits of EE-induced rehabilitation.

6.
Neural Regen Res ; 14(3): 462-469, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30539814

RESUMO

Cerebral ischemia activates an endogenous repair program that induces plastic changes in neurons. In this study, we investigated the effects of environmental enrichment on spatial learning and memory as well as on synaptic remodeling in a mouse model of chronic cerebral ischemia, produced by subjecting adult male C57BL/6 mice to permanent left middle cerebral artery occlusion. Three days postoperatively, mice were randomly assigned to the environmental enrichment and standard housing groups. Mice in the standard housing group were housed and fed a standard diet. Mice in the environmental enrichment group were housed in a cage with various toys and fed a standard diet. Then, 28 days postoperatively, spatial learning and memory were tested using the Morris water maze. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 in the hippocampus were analyzed by western blot assay. The number of synapses was evaluated by electron microscopy. In the water maze test, mice in the environmental enrichment group had a shorter escape latency, traveled markedly longer distances, spent more time in the correct quadrant (northeast zone), and had a higher frequency of crossings compared with the standard housing group. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 were substantially upregulated in the hippocampus in the environmental enrichment group compared with the standard housing group. Furthermore, electron microscopy revealed that environmental enrichment increased the number of synapses in the hippocampal CA1 region. Collectively, these findings suggest that environmental enrichment ameliorates the spatial learning and memory impairment induced by permanent middle cerebral artery occlusion. Environmental enrichment in mice with cerebral ischemia likely promotes cognitive recovery by inducing plastic changes in synapses.

7.
Zhen Ci Yan Jiu ; 38(4): 324-9, 2013 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-24261305

RESUMO

After searching for literature about the specificity of acupoints from China National Knowledge Infrastructure (CNKI) database (in Chinese) and MEDLINE (in English), published by Chinese scholars from June 2003 to June 2012, the authors made a systemic analysis on the retrieved papers. It was found that most Chinese scholars took a positive viewpoint about the specificity of acupoints in morphological structure, biophysical characters, pathological reactions, acupuncture stimulation-induced responses in different brain regions and therapeutic effects. However, the research methods and comprehensive analysis of abundant research results need being improved, and the conclusion should be validated extensively. Moreover, the research on the affecting factors of specificity of acupoints will be one of the major directions.


Assuntos
Pontos de Acupuntura , Meridianos , Terapia por Acupuntura , China , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...