Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Clin Immunol ; 254: 109690, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423488

RESUMO

BACKGROUND: Metrnl play an immunocytokine-like role in several diseases, which is also known as meteorin-like because it is homologous to the neurotrophic factor meteorin (Metrn). Although the expression and function of Metrnl, including neurotrophic, immunomodulatory, and insulin resistance functions in different tissues have been extensively studied, its role in sepsis has remained largely limited. METHODS: The present work analyzed the levels of Metrnl and cytokines in the circulation, such as tumor necrosis factor (TNF-α), interleukin (IL-1)ß, IL-6, IL-8, together with IL-10 among septic adult patients. Clinical information was obtained from such patients, including sofa score, procalcitonin(PCT)count, and C-reactive count (CRP) within 24 h when entering the intensive care unit (ICU). We constructed a sepsis model in Metrnl-deficient or normal wild-type mice using cecal ligation and perforation to study its functions in bacterial burden, survival, cytokine/chemokine generation, peritoneal lavage fluid neutrophils, macrophage and lymphocyte recruitment, and Treg/Th17 immune cell balance after CLP-induced sepsis. RESULTS: The expression of Metrnl was remarkably elevated in the early phase of sepsis clinically. Its serum content in patients dying of sepsis slightly decreased relative to that in survivors. Furthermore, the concentration of Metrnl in septic cases when entering the ICU independently predicted the 28-day mortality. For septic patients who had low serum Metrnl content (≤ 274.40 pg/mL), the death risk increased by 2.3 folds relative to those who had a high serum content. It is reported that Metrnl is probably insufficient among patients dying of sepsis. Additionally, the content of Metrnl in the serum of septic patients when entering the ICU is markedly and negatively related to the levels of TNF-α, IL-1ß, IL-6, IL-8, IL-17, PCT, and Sofa score. Collectively, Metrnl could be a potential therapeutic target for sepsis. A low-lethality non-severe sepsis (NSS) model was constructed, which suggested that Metrnl insufficiency elevated the death rate and reduced bacterial clearance during sepsis. For Metrnl-deficient mice, impaired sepsis immunity defense might be related to decreased macrophage recruitment and Treg/Th17 lymphocyte imbalance. Recombinant Metrnl administered to Metrnl-deficient mice abolished the immunity defense impairment following NSS while protecting the high-lethality severe sepsis (SS) model in wild-type (WT) mice. In addition, Metrnl-induced sepsis prevention was intricately associated with the increased recruitment of peritoneal macrophages and modulation of the Treg/TH17 immune cell balance. Furthermore, CCL3 exposure in Metrnl-deficient mice reduced peritoneal bacterial loads while improving survival during sepsis partially by promoting the recruitment of peritoneal macrophages. Furthermore, Metrnl regulated the polarization of M1 macrophages through the ROS signaling pathway and promoted macrophage phagocytosis, thereby killing Escherichia coli. CONCLUSIONS: The present proof-of-concept work suggests that Metrnl-mediated recruitment of macrophages significantly affects sepsis defense in the host and modulates the Treg/Th17 immune cell balance. Findings in this work shed more light on the development of host-directed treatments that can be used to manipulate host immunity to treat sepsis.


Assuntos
Citocinas , Sepse , Animais , Camundongos , Citocinas/metabolismo , Interleucina-6/metabolismo , Interleucina-8 , Interleucinas , Macrófagos/metabolismo , Linfócitos T Reguladores , Células Th17/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Shock ; 59(4): 560-568, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719429

RESUMO

ABSTRACT: Purpose : Sepsis is the leading cause of death in patients with severe acute pancreatitis (SAP) in the intensive care unit (ICU). Early prediction of sepsis secondary to SAP developed in the late phase and of related mortality can enable appropriate treatment and improve outcomes. This study was conducted to evaluate the predictive value of presepsin in ICU patients with SAP at the early stage and compared it with established blood markers and scoring systems. Methods : This retrospective study enrolled 48 septic patients and 53 nonseptic patients admitted to ICU with SAP. Presepsin and other blood markers (procalcitonin, C-reactive protein, IL-6, white blood cell, and serum creatinine) on days 1, 3, and 7 after enrollment as well as scoring systems were assessed to predict secondary sepsis. Outcomes were evaluated at ICU discharge and on days 28 and 90. Results : Presepsin levels (on days 1, 3, and 7) were significantly higher in septic patients than in nonseptic patients. Presepsin levels showed an increasing trend over time in both sepsis and nonsepsis groups, but concentrations increased more rapidly in the sepsis group than in the nonsepsis group. Among the analyzed biomarkers, presepsin was the only blood marker independently associated with sepsis secondary to SAP on days 3 and 7, and presepsin on day 3 was independently associated with mortality at ICU discharge and on days 28 and 90. It showed similar or even better predictive accuracy for both secondary sepsis and mortality than procalcitonin and Sequential Organ Failure Assessment score. Conclusion : Presepsin could be a valuable early predictor of secondary sepsis and mortality in patients admitted to the ICU with SAP and may serve as an indicator for early risk stratification.


Assuntos
Pancreatite , Sepse , Humanos , Estudos Retrospectivos , Pró-Calcitonina , Doença Aguda , Pancreatite/diagnóstico , Biomarcadores , Unidades de Terapia Intensiva , Fragmentos de Peptídeos , Receptores de Lipopolissacarídeos , Prognóstico
3.
Artigo em Inglês | MEDLINE | ID: mdl-36016684

RESUMO

Background/Aim: We aimed to identify the differentially expressing metabolites (DEMs) in the muscles of the mouse model of sepsis-induced acquired weakness (sepsis-AW) using liquid chromatography-mass spectrometry (LC-MS). Materials and Methods: Sepsis by cecal ligation puncture (CLP) with lower limb immobilization was used to produce a sepsis-AW model. After this, the grip strength of the C57BL/6 male mice was investigated. The transmission electron microscopy was utilized to determine the pathological model. LC-MS was used to detect the metabolic profiles within the mouse muscles. Additionally, a statistically diversified analysis was carried out. Results: Compared to the sepsis group, 30 DEMs, including 17 upregulated and 13 down-regulated metabolites, were found in the sepsis-AW group. The enriched metabolic pathways including purine metabolism, valine/leucine/isoleucine biosynthesis, cGMP-PKG pathway, mTOR pathway, FoxO pathway, and PI3K-Akt pathway were found to differ between the two groups. The targeted metabolomics analysis explored significant differences between four amino acid metabolites (leucine, cysteine, tyrosine, and serine) and two energy metabolites (AMP and cAMP) in the muscles of the sepsis-AW experimental model group, which was comparable to the sepsis group. Conclusion: The present work identified DEMs and metabolism-related pathways within the muscles of the sepsis-AW mice, which offered valuable experimental data for diagnosis and identification of the pathogenic mechanism underlying sepsis-AW.

4.
Shock ; 57(5): 703-713, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35583912

RESUMO

OBJECTIVE: Interleukin-38 (IL-38), a new type of cytokine, is involved in processes such as tissue repair, inflammatory response, and immune response. However, its function in pneumonia caused by Pseudomonas aeruginosa (P. aeruginosa) is still unclear. METHODS: In this study, we detected circulating IL-38 and cytokines such as IL-1ß, IL-6, IL-17A, TNF-α, IL-8, and IL-10 in adults affected by early stage pneumonia caused by P. aeruginosa. Collected clinical data of these patients, such as the APACHE II score, levels of PCT, and oxygenation index when they entering the ICU. Using P. aeruginosa-induced pneumonia WT murine model to evaluate the effect of IL-38 on Treg differentiation, cell apoptosis, survival, tissue damage, inflammation, and bacterial removal. RESULTS: In clinical research, although IL-38 is significantly increased during the early stages of clinical P. aeruginosa pneumonia, the concentration of IL-38 in the serum of patients who died with P. aeruginosa pneumonia was relatively lower than that of surviving patients. It reveals IL-38 may insufficiently secreted in patients who died with P. aeruginosa pneumonia. Besides, the serum IL-38 level of patients with P. aeruginosa pneumonia on the day of admission to the ICU showed significantly positive correlations with IL-10 and the PaO2/FiO2 ratio but negative correlations with IL-1ß, IL-6, IL-8, IL-17, TNF-α, APACHE II score, and PCT In summary, IL-38 might be a molecule for adjuvant therapy in P. aeruginosa pneumonia. In experimental animal models, first recombinant IL-38 improved survival, whereas anti-IL-38 antibody reduced survival in the experimental pneumonia murine model. Secondly, IL-38 exposure reduced the inflammatory response, as suggested by the lung injury, and reduced cytokine levels (IL-1ß, IL-6, IL- 17A, TNF-α, and IL-8, but not IL-10). It also increased bacterial clearance and reduced cell apoptosis in the lungs. Furthermore, IL-38 was shown to reduce TBK1 expression in vitro when naive CD4+ T lymphocytes were differentiated to Tregs and played a protective role in P. aeruginosa pneumonia. CONCLUSIONS: To summarize, the above findings provide additional insights into the mechanism of IL-38 in the treatment of P. aeruginosa pneumonia.


Assuntos
Interleucinas , Pneumonia , Infecções por Pseudomonas , Animais , Citocinas/sangue , Modelos Animais de Doenças , Humanos , Interleucina-1/imunologia , Interleucinas/sangue , Pulmão/imunologia , Camundongos , Pneumonia/imunologia , Pneumonia/microbiologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Fator de Necrose Tumoral alfa
5.
Sensors (Basel) ; 21(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34770667

RESUMO

Different from traditional redundant manipulators, the redundant manipulators used in the surgical environment require the end effector (EE) to have high pose (position and orientation) accuracy to ensure the smooth progress of the operation. When analyzing the inverse kinematics (IK) of traditional redundant manipulators, gradient-projection method (GPM) and weighted least-norm (WLN) method are commonly used methods to avoid joint position limits. However, for the traditional GPM and WLN method, when joints are close to their limits, they stop moving, which greatly reduces the accuracy of the IK solution. When robotic manipulators enter a singular region, although traditional damped least-squares (DLS) algorithms are used to handle singularities effectively, motion errors of the EE will be introduced. Furthermore, selecting singular region through trial and error may cause some joint velocities exceed their corresponding limits. More importantly, traditional DLS algorithms cannot guide robotic manipulators away from singular regions. Inspired by the merits of GPM, WLN, and DLS methods, an improved weighted gradient projection method (IWGPM) is proposed to solve the IK problem of redundant manipulators used in the surgical environment with avoiding joint position limits and singularities. The weighted matrix of the WLN method and the damping factor of the DLS algorithm have been improved, and a joint limit repulsive potential field function and singular repulsive potential field function belong to the null space are introduced to completely keep joints away from the damping interval and redundant manipulators away from the unsafe region. To verify the validity of the proposed IWGPM, simulations on a 7 degree of freedom (DOF) redundant manipulator used in laparoscopic surgery indicate that the proposed method can not only achieve higher accuracy IK solution but also avoid joint position limits and singularities effectively by comparing them with the results of the traditional GPM and WLN method, respectively. Furthermore, based on the proposed IWGPM, simulation tests in two cases show that joint position limits have a great impact on the orientation accuracy, and singular potential energy function has a great impact on the position accuracy.


Assuntos
Movimento , Robótica , Algoritmos , Fenômenos Biomecânicos , Movimento (Física)
6.
Int Immunopharmacol ; 99: 107914, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34246059

RESUMO

OBJECTIVES: Acute respiratory distress syndrome (ARDS) is characterized by an excessive pulmonary inflammatory response. Pyroptosis is a newly form of programmed inflammatory cell death that is triggered by inflammatory caspases. Studies have shown that Luteolin has powerful anti-inflammation effects through activating the function of regulatory T cells (Tregs). The study aimed at investigating the effects of Luteolin on CLP-induced ALI. METHODS: In our study, we employed the mouse cecal ligation and puncture (CLP) model to explore whether Luteolin contributed to alleviated lung injury in vivo. H&E staining and wet/dry (W/D) weight ratios were used to evaluate the severity of lung injury. The serum and BALF of cytokines were assessed by ELISA. The number of neutrophils in the BALF was counted. Immunohistochemistry of IL-10 and MPO in lung tissue was detected. The ROS level in lung was tested by ROS Assay Kit and expression of Gpx4 in lung tissue was detected by qRT-PCR and Western blotting. The regulatory T cells (Treg) population was analyzed in spleen and Peripheral blood mononuclear cells (PBMCs). The levels of caspase-11 protein, caspase-1 protein, GSDMD protein, IL-1α and IL-1ß protein in the lung tissue was evaluated by Western blotting. RESULTS: We found Luteolin significantly inhibits inflammation and attenuated CLP-induced lung injury in vivo, and the levels of, caspase-11, caspase-1, GSDMD, IL-1α and IL-1ß protein in the lungs of CLP mice decreased significantly after pretreatment with Luteolin. Furthermore, the results showed that Luteolin could increase Treg frequencies and IL-10 levels in serum and BALF of CLP mice. It is noteworthy that depleting Tregs reverse Luteolin ameliorated lung injury, and IL-10 neutralizing antibodies treatment aggravated lung pyroptosis. CONCLUSIONS: Our study illustrated that Luteolin contributed to alleviated lung injury, and attenuated caspase-11-dependent pyroptosis in the lung tissue of the CLP-induced ALI mouse model. The mechanisms could be related to regulating the frequency of Tregs and the levels of Treg derived IL-10. Treg cells were show to produce IL-10 and could alleviating caspase-11-dependent lung pyroptosis.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Luteolina/uso terapêutico , Sepse/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Caspases Iniciadoras/imunologia , Interleucina-10/imunologia , Contagem de Leucócitos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Luteolina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Piroptose/efeitos dos fármacos , Sepse/complicações , Sepse/imunologia , Sepse/patologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
7.
Materials (Basel) ; 14(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34300927

RESUMO

Fused deposition modeling (FDM) has the advantage of being able to process complex workpieces with relatively simple operations. However, when processing complex components in a suspended state, it is necessary to add support parts to be processed and formed, which indicates an excessive dependence on support. The stress intensity of the supported positions of the printing components can be modified by changing the supporting model of the parts, their density, and their distance in relation to the Z direction in the FDM printing settings. The focus of the present work was to study the influences of these three modified factors on the stress intensity of the supporting position of the printing components. In this study, 99 sets of compression tests were carried out using a position of an FDM-supported part, and the experimental results were observed and analyzed with a 3D topographic imager. A reference experiment on the anti-pressure abilities of the printing components without support was also conducted. The experimental results clarify how the above factors can affect the anti-pressure abilities of the supporting positions of the printing components. According to the results, when the supporting density is 30% and the supporting distance in the Z direction is Z = 0.14, the compressive strength of the printing component is lowest. When the supporting density of the printing component is ≤30% and the supporting distance in the Z direction is Z ≥ 0.10, the compressive strength of printing without support is greater than that of the linear support model. Under the same conditions, the grid-support method offers the highest compressive strength.

8.
Mediators Inflamm ; 2021: 5596339, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054345

RESUMO

BACKGROUND: Basil polysaccharide (BPS) represents a main active ingredient extracted from basil (Ocimum basilicum L.), which can regulate secondary bacterial pneumonia development in the process of sepsis-mediated immunosuppression. METHODS: In this study, a dual model of sepsis-induced secondary pneumonia with cecal ligation and puncture and intratracheal instillation of Staphylococcus aureus or Pseudomonas aeruginosa was constructed. RESULTS: The results indicated that BPS-treated mice undergoing CLP showed resistance to secondary S. aureus pneumonia. Compared with the IgG-treated group, BPS-treated mice exhibited better survival rate along with a higher bacterial clearance rate. Additionally, BPS treatment attenuated cell apoptosis, enhanced lymphocyte and macrophage recruitment to the lung, promoted pulmonary cytokine production, and significantly enhanced CC receptor ligand 4 (CCL4). Notably, recombinant CCL4 protein could enhance the protective effect on S. aureus-induced secondary pulmonary infection of septic mice, which indicated that BPS-induced CCL4 partially mediated resistance to secondary bacterial pneumonia. In addition, BPS priming markedly promoted the phagocytosis of alveolar macrophages while killing S. aureus in vitro, which was related to the enhanced p38MAPK signal transduction pathway activation. Moreover, BPS also played a protective role in sepsis-induced secondary S. aureus pneumonia by inducing Treg cell differentiation. CONCLUSIONS: Collectively, these results shed novel lights on the BPS treatment mechanism in sepsis-induced secondary S. aureus pneumonia in mice.


Assuntos
Ocimum basilicum , Pneumonia Estafilocócica , Infecções por Pseudomonas , Sepse , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Estafilocócica/complicações , Pneumonia Estafilocócica/tratamento farmacológico , Polissacarídeos , Infecções por Pseudomonas/complicações , Sepse/complicações , Sepse/tratamento farmacológico , Staphylococcus aureus
9.
J Renin Angiotensin Aldosterone Syst ; 22(1): 1470320321999497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33678076

RESUMO

OBJECTIVE: Mechanical ventilation is an important treatment for critically ill patients. Physicians generally perform a spontaneous breathing trial (SBT) to determine whether the patients can be weaned from mechanical ventilation, but almost 17% of the patients who pass the SBT still require respiratory support. Cardiac dysfunction is an important cause of weaning failure. The use of brain natriuretic peptide or N-terminal pro-BNP is a simple method to assess cardiac function. We performed a systematic review of investigations of brain natriuretic peptide or N-terminal pro-BNP as predictors of weaning from mechanical ventilation. DATA SOURCES: PubMed (1950 to December 2020), Cochrane, and Embase (1974 to December 2020), and some Chinese databases for additional articles (China Biology Medicine (CBM), China Science and Technology Journal Database (CSTJ), and Wanfang Data and China National Knowledge Infrastructure (CNKI)). STUDY SELECTION: We systematically searched observation studies investigating the predictive value of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide in weaning outcome of patients with mechanical ventilation. DATA EXTRACTION: Two independent reviewers extracted data. The differences are resolved through consultation. DATA SYNTHESIS: We included 18 articles with 1416 patients and extracted six index tests with pooled sensitivity and specificity for each index test. For the BNP change rate predicting weaning success, the pooled sensitivity was 89% (83%-94%) and the pooled specificity was 82% (72%-89%) with the highest pooled AUC of 0.9511. CONCLUSIONS: The brain natriuretic peptide change rate is a reliable predictor of weaning outcome from mechanical ventilation.


Assuntos
Peptídeo Natriurético Encefálico/metabolismo , Fragmentos de Peptídeos/metabolismo , Respiração Artificial , Desmame do Respirador , Adulto , Humanos , Valor Preditivo dos Testes , Curva ROC
10.
J Immunol Res ; 2021: 8883962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33532509

RESUMO

OBJECTIVES: Inflammatory disease characterized by clinical destructive respiratory disorder is called acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Studies have shown that luteolin exerts anti-inflammatory effects by increasing regulatory T cells (Tregs). In this study, we aimed to determine the effects of luteolin on ALI/ARDS and Treg differentiation. METHODS: In this paper, we used cecal ligation puncture (CLP) to generate an ALI mouse model to determine the effects of luteolin on ALI/ARDS. Lung tissues were stained for interleukin- (IL-) 17A and myeloperoxidase (MPO) by immunohistochemical analysis. The levels of Treg-related cytokines in serum and bronchoalveolar lavage fluid (BALF) of mice were detected. The protein levels of NF-κB p65 in lung tissues were measured. Macrophage phenotypes in lung tissues were measured using immunofluorescence. The proportion of Tregs in splenic mononuclear cells and peripheral blood mononuclear cells (PBMCs) was quantified. Furthermore, in vitro, we evaluated the effects of luteolin on Treg differentiation, and the effects of IL-10 immune regulation on macrophage polarization were examined. RESULTS: Luteolin alleviated lung injury and suppressed uncontrolled inflammation and downregulated IL-17A, MPO, and NF-κB in the lungs of CLP-induced mouse models. At this time, luteolin upregulated the level of IL-10 in serum and BALF and the frequency of CD4+CD25+FOXP3+ Tregs in PBMCs and splenic mononuclear cells of CLP mice. Luteolin treatment decreased the proportion of M1 macrophages and increased the proportion of M2 macrophages in lungs of CLP-induced mouse models. In vitro, administration of luteolin significantly induced Treg differentiation, and IL-10 promoted the polarization of M2 macrophages but reduced the polarization of M1 macrophages. CONCLUSIONS: Luteolin alleviated lung injury and suppressed uncontrolled inflammation by inducing the differentiation of CD4+CD25+FOXP3+ Tregs and upregulating the expression of IL-10. Furthermore, the anti-inflammatory cytokine IL-10 promoted polarization of M2 macrophages in vitro. Luteolin-induced Treg differentiation from naïve CD4+ T cells may be a potential mechanism for regulating IL-10 production.


Assuntos
Lesão Pulmonar Aguda/etiologia , Luteolina/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/fisiologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Anti-Inflamatórios/farmacologia , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Células RAW 264.7 , Linfócitos T Reguladores/citologia
11.
Mediators Inflamm ; 2021: 2605973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33564275

RESUMO

BACKGROUND: Liver macrophages play an important regulatory role in the inflammatory response of liver injury after severe infection. Interleukin- (IL-) 27 is an inflammatory cytokine that plays an important role in diseases caused by bacterial infection. However, the relationship between IL-27 and liver macrophages in liver injury after severe infection is not yet clear. METHODS: A cecal ligation puncture (CLP) model was established in wild-type (WT) and IL-27 receptor- (WSX-1-) deficient (IL-27r-/-) mice, and recombinant IL-27 and gadolinium chloride (GdCl3) were injected into WT mice in the designated groups. The serum and liver IL-27, IL-6, tumor necrosis factor alpha (TNF-α), and IL-1ß expression levels were evaluated by ELISA, quantitative PCR, or Western blotting; serum ALT and AST were detected by detection kits; and the severity of liver damage was evaluated by hematoxylin and eosin staining and the TUNEL assay of the liver tissue from the different groups. Liver macrophage polarization was evaluated by immunofluorescence. In addition, the polarization of peritoneal macrophage was evaluated by flow cytometry. RESULTS: The serum and liver IL-27 expression levels were elevated in WT mice after CLP-induced severe infection, which were consistent with the changes in HE scores in the liver tissue. The levels of serum ALT, AST, liver IL-6, TNF-α, and IL-1ß mRNA and liver pathological injury scores were further increased when pretreated with recombinant IL-27 in WT mice, but these levels were decreased in IL-27r-/- mice after CLP-induced severe infection compared to WT mice. In WT mice pretreated with GdCl3, liver pathological scores, serum ALT and AST, TUNEL-positive cell proportion from liver tissues, liver IL-27 expression, and the liver macrophages M1 polarization proportion decreased after CLP; however, the serum IL-27, IL-6, TNF-α, and IL-1ß levels and the pathological lung and kidney scores were not significantly changed. When supplemented with exogenous IL-27, the liver pathological scores, serum ALT, AST, TUNEL-positive cell proportion of liver tissues, liver IL-27 expression, and the liver macrophage M1 polarization proportion increased. The in vitro, IL-27 expression increased in peritoneal macrophages when stimulated with LPS. Recombinant IL-27 together with LPS promoted the elevations in IL-6, TNF-α, and IL-1ß levels in supernatant and the M1 polarization of peritoneal macrophages. CONCLUSION: IL-27 is an important cytokine in the inflammatory response to liver injury after severe infection. The reduction of liver injury by gadolinium chloride in severe infection mice models may relate to the inhibition of liver IL-27 production. These changes may be mainly related to the decrease of liver macrophages M1 polarization. IL-27 may have a positive feedback on these macrophages.


Assuntos
Gadolínio , Interleucinas/metabolismo , Fígado/lesões , Animais , Apoptose , Meios de Contraste , Citocinas/metabolismo , Inflamação , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucinas/antagonistas & inibidores , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ferimentos e Lesões
12.
Mol Immunol ; 132: 236-249, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33494935

RESUMO

Regulatory T lymphocytes are important targets for the treatment of acute respiratory distress syndrome (ARDS). IL-35 is a newly identified IL-12 cytokine family member that plays an important protective role in a variety of immune system diseases by regulating Treg cell differentiation; however, the role of IL-35 in the pathogenesis of ARDS is still unclear. Here, we found that IL-35 was significantly elevated in adult patients with ARDS compared to controls. Additionally, IL-35 was positively and significantly correlated with IL-6, IL-10 and the oxygenation index (PaO2/FiO2 ratio) but negatively correlated with TNF-α, IL-1ß and APACHE II score during ARDS. Moreover, the proportion of Treg/CD4+ cells in the peripheral blood of ARDS patients and the expression of NF-κB in PMBCs were significantly higher than in healthy individuals. Recombinant IL-35 improved survival in a murine model of CLP-induced ARDS. Additionally, IL-35 administration decreased the inflammatory response, as reflected by lower levels of cytokines (including IL-2, TNF-α, IL-1ß and IL-6) and less lung damage in CLP-induced ARDS. Furthermore, recombinant IL-35 reduced the apoptosis of lung tissue and the expression of NF-κB signalling in a CLP-induced ARDS model and increased the proportion of Treg cells in spleen and peripheral blood. In vitro experiments revealed that IL-35 can affect the phosphorylation of STAT5 during differentiation of naïve CD4+ T lymphocytes into Foxp3+Helios+ Tregs. Our findings suggest that IL-35 attenuates ARDS by promoting the differentiation of naïve CD4+ T cells into Foxp3+Helios+ Tregs, thereby providing a novel tool for anti-ARDS therapy.


Assuntos
Diferenciação Celular/imunologia , Fatores de Transcrição Forkhead/imunologia , Fator de Transcrição Ikaros/imunologia , Interleucinas/imunologia , Síndrome do Desconforto Respiratório/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Citocinas/imunologia , Feminino , Humanos , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
13.
Int Immunopharmacol ; 91: 107295, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360086

RESUMO

OBJECTIVES: Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a severe form of inflammatory lung disease. Its development and progression are regulated by cytokines. The purpose of this study was to determine the effects of HMGB1 involved in the regulation of Treg cells and IL-35. METHODS: A cecal ligation and puncture (CLP)-induced ALI model was used to investigate the changes in IL-35, Tregs, and the expression of RAGE and caspase-11 after HMGB1 inhibition (glycyrrhizin was used as an inhibitor of HMGB1). CD4+ naïve T cells sorted from C57BL/6 mice spleens were cultured to explore the role of HMGB1 in the differentiation from CD4+ naïve T cells to Tregs. RESULTS: HMGB1 promoted lung injury and uncontrolled inflammation in the CLP mouse model. HMGB1, NF-κB p65, RAGE, and caspase-11 expression in the lungs of CLP mice decreased significantly after pretreatment with glycyrrhizin. We found that the Treg proportion and IL-35 expression were upregulated in the serum and lung of CLP mice after inhibiting HMGB1. In our in vitro experiments, we found that recombinant HMGB1 significantly suppressed the proportion of CD4+CD25+FOXP3+Tregs differentiated from CD4+ naïve T cells. CONCLUSIONS: The inhibition of HMGB1 increased the proportion of Treg and expression of IL-35 and alleviated lung injury in the CLP-induced ALI model. Furthermore, inhibition of HMGB1 reduced caspase-11-dependent pyroptosis in the lungs of the CLP-induced ALI model.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Linfócitos T CD4-Positivos/metabolismo , Caspases Iniciadoras/metabolismo , Diferenciação Celular , Proteína HMGB1/metabolismo , Interleucinas/metabolismo , Pulmão/enzimologia , Piroptose , Síndrome do Desconforto Respiratório/enzimologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/ultraestrutura , Caspases Iniciadoras/genética , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Proteína HMGB1/genética , Mediadores da Inflamação/metabolismo , Interleucinas/genética , Pulmão/imunologia , Pulmão/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia , Transdução de Sinais
14.
Rapid Commun Mass Spectrom ; 35(2): e8971, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33049802

RESUMO

RATIONALE: The aim of this study was to analyze the metabolomics of lung with different host inflammation of acute respiratory distress syndrome (ARDS) for the identification of biomarkers for predicting severity under different inflammatory conditions. METHODS: Cecal ligation and puncture (CLP) and lipopolysaccharide (LPS)-intratracheal injection induced acute lung injury (ALI) were used. A mouse model was used to explore lung metabolomic biomarkers in ALI/ARDS. The splenectomy model was used as an auxiliary method to distinguish between hyper- and hypo-inflammatory subtypes. Plasma, lung tissue and bronchoalveolar lavage fluid (BALF) samples were collected from mice after CLP/LPS. The severity of lung injury was evaluated. Expression of tumor necrosis factor-α (TNF-α) in mice serum and lung was tested by enzyme-linked immunosorbent assay (ELISA) and polymer chain reaction (PCR). Polymorphonuclear cells in BALF were counted. The lung metabolites were detected by gas chromatography/mass spectrometry (GC/MS), and the metabolic pathways predicted using the KEGG database. RESULTS: The LPS/CLP-Splen group had more severe lung injury than the corresponding ALI group; that in the CLP-Splen group was more serious than in the LPS-Splen group. TNF-α expression was significantly elevated in the serum and lung tissue after LPS or CLP, and higher in the LPS/CLP-Splen group than in the corresponding ALI group. The level of TNF-α in the CLP-Splen group was elevated significantly over that in the LPS-Splen group. Both these groups also showed significant neutrophil exudation within the lungs. During differential inflammation, more differential metabolites were detected in the lungs of the CLP group ALI mice than in the LPS group. A total of 41 compounds were detected in the lungs of the CLP and CLP-Splen groups. Contrastingly, eight compounds were detected in the lungs of the LPS and LPS-Splen groups. The LPS-Splen and CLP-Splen groups had significant neutrophil exudation in the lung. Random forest analysis of lung-targeted metabolomics data indicated 4-hydroxyphenylacetic acid, 1-aminocyclopentanecarboxylic acid (ACPC), cis-aconitic acid, and hydroxybenzoic acid as strong predictors of the hyper-inflammatory subgroup in the CLP group. Furthermore, with splenectomy, 13 differential metabolic pathways between the CLP and LPS groups were revealed. CONCLUSIONS: Hyper-inflammatory subgroups of ARDS have a greater inflammatory response and a more active lung metabolism. Combined with the host inflammation background, biomarkers from metabolomics could help evaluate the response severity of ARDS.


Assuntos
Pulmão/metabolismo , Metaboloma/fisiologia , Pneumonia/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Animais , Modelos Animais de Doenças , Cromatografia Gasosa-Espectrometria de Massas , Pulmão/química , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
15.
Infect Genet Evol ; 85: 104569, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32979549

RESUMO

OBJECTIVE: Fractalkine, CX3CL1, is involved in the directional movement of chemokine cells, immune response, inflammatory response, tissue repair, and other processes. However, its role in sepsis is not well known. METHODS: We measured circulating Fractalkine in adult patients with sepsis. Effects of Fractalkine on the survival, inflammation, tissue injury, and bacterial clearance were assessed using the WT or CX3CL-/- murine model of cecal ligation and puncture (CLP)-induced sepsis. RESULTS: Serum Fractalkine concentrations were significantly elevated in adult patients with sepsis compared to healthy adults. Increased Fractalkine correlated positively with the number of blood leukocytes and the level of inflammatory cytokines, including IL-6, IL-1ß, IL-17A, IFN-γ, and TNF-α, and correlated negatively with IL-10 in clinical sepsis. Recombinant Fractalkine impaired survival whereas Fractalkine gene knockout or anti-Fractalkine antibody improved survival in the murine model of CLP-induced sepsis. Fractalkine administration increased inflammatory response, evident by higher levels of cytokines (TNF-α, IL-1ß, IL-17A, IFN-γ, and IL-6 but not IL-10), and tissue damage (lung, liver, and kidney) in CLP-induced sepsis. Fractalkine reduced bacterial clearance in CLP-induced polymicrobial sepsis by reducing macrophage or neutrophil phagocytosis and intracellular elimination of E. coli. CONCLUSIONS: Fractalkine aggravates sepsis by increasing inflammation and decreasing bacterial clearance, and is a potential tool for anti-sepsis therapy.


Assuntos
Biomarcadores , Quimiocina CX3CL1/sangue , Insuficiência de Múltiplos Órgãos/sangue , Insuficiência de Múltiplos Órgãos/etiologia , Sepse/complicações , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Mediadores da Inflamação , Camundongos , Camundongos Knockout , Insuficiência de Múltiplos Órgãos/diagnóstico , Insuficiência de Múltiplos Órgãos/terapia
16.
Mediators Inflamm ; 2020: 9704327, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32565732

RESUMO

Progranulin (PGRN), which plays an anti-inflammatory role in acute lung injury (ALI), is promising as a potential drug. Studies have shown that regulatory T cells (Tregs) and interleukin- (IL-) 10 can repress inflammation and alleviate tissue damage during ALI. In this study, we built a lipopolysaccharide- (LPS-) induced ALI mouse model to illustrate the effect of PGRN on regulation of Treg differentiation and modulation of IL-10 promoting macrophage polarization. We found that the proportion of Tregs in splenic mononuclear cells and peripheral blood mononuclear cells was higher after treatment with PGRN. The increased proportion of Tregs after PGRN intratracheal instillation was consistent with the decreased severity of lung injury, the reduction of proinflammatory cytokines, and the increase of anti-inflammatory cytokines. In vitro, the percentages of CD4+CD25+FOXP3+ Tregs from splenic naïve CD4+ T cells increased after PGRN treatment. In further research, it was found that PGRN can regulate the anti-inflammatory factor IL-10 and affect the polarization of M1/M2 macrophages by upregulating IL-10. These findings show that PGRN likely plays a protective role in ALI by promoting Treg differentiation and activating IL-10 immunomodulation.


Assuntos
Lesão Pulmonar Aguda/terapia , Interleucina-10/metabolismo , Macrófagos/citologia , Progranulinas/farmacologia , Linfócitos T Reguladores/citologia , Animais , Líquido da Lavagem Broncoalveolar , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular , Quimiocinas , Citocinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Inflamação , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Lipopolissacarídeos/metabolismo , Pulmão/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Células RAW 264.7
17.
Inflammation ; 43(5): 1913-1924, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32535666

RESUMO

Interleukin (IL)-35, which has an anti-inflammatory role in acute respiratory distress syndrome (ARDS)/acute lung injury (ALI), is relatively promising as a drug target. Studies have shown that curcumin may play a therapeutic role in ALI and enhance the suppressive function of regulatory T cells (Tregs). To illustrate the effect of curcumin on the regulation of Treg cell differentiation and expression of IL-35, we built a cecal ligation and puncture (CLP)-induced acute lung injury mouse mode with curcumin pretreatment. The expression of IL-35 in serum, severity of lung injury, IL-17A in lung tissue, survival rate, Treg-related cytokines levels in serum, nuclear factor-kappa B (NF-κB)'s nuclear translocation in lung tissue, and splenic CD4+CD25+FOXP3+ Tregs were assessed. Furthermore, the proportion of Tregs, STAT5, and IL-35 expression during naïve CD4+ T cell differentiation in vitro was measured. Compared with the CLP group, the increased IL-35 expression in CLP with the curcumin pretreatment (CLP + Cur) group was consistent with the decreased severity of lung injury, IL-17A protein levels in lung tissue, and Treg-related cytokines levels. Pretreatment with curcumin, the survival rate climbed to 50%, while the mortality rate was 100% in the CLP group. In addition, splenic CD4+CD25+FOXP3+ Treg cells increased in the CLP + Cur group. In vitro, CD4+CD25+FOXP3+ Treg cells from naïve CD4+ T cells, STAT5 proportion, and IL-35 expression increased after curcumin treatment. These findings showed that curcumin might regulate IL-35 by activating the differentiation of Treg cells to control the inflammation in acute lung injury.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Diferenciação Celular/efeitos dos fármacos , Curcumina/uso terapêutico , Interleucinas/biossíntese , Linfócitos T Reguladores/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Ceco/metabolismo , Ceco/patologia , Ceco/cirurgia , Diferenciação Celular/fisiologia , Curcumina/farmacologia , Expressão Gênica , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/efeitos dos fármacos
18.
Med Sci Monit ; 26: e921370, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254065

RESUMO

BACKGROUND Ovarian cancer (OC) is one of the leading causes of cancer-related mortality worldwide. The clinical outcome of EOC remains unsatisfactory with current therapeutic approaches such as surgery and platinum/taxane-based chemotherapy. Therefore, novel prognostic markers and personalized therapies targeting specific molecules are urgently needed. Here, we explored whether RNF126, an E3 ubiquitin ligase, is a potential biomarker for epithelial ovarian cancer (EOC). MATERIAL AND METHODS This was a retrospective cohort study of 122 EOC patients. The chi-square test was used to assess correlations between RNF126 level and clinical characteristics of enrolled patients. Univariate and multivariate analyses were performed to monitor the prognosis of enrolled patients. In addition, proliferation and invasion assays were conducted to assess the cellular effects of RNF126 on SKOV3 cell progression. RESULTS Immunohistochemistry analysis (IHC) revealed that RNF126 was upregulated in EOC tissues compared to adjacent ovarian tissues. In addition, RNF126 expression was remarkably associated with LN metastasis, pathological differentiation, and FIGO stage. RNF126 protein level was found to be an independent biomarker for predication of prognosis in ovarian cancer patients. Cellular results showed that RNF126 enhanced the proliferation and invasion abilities of SKOV3 cells. CONCLUSIONS Upregulated protein level of RNF126 in EOC tissues is a biomarker predicting poor outcomes of EOC patients.


Assuntos
Carcinoma Epitelial do Ovário/metabolismo , Neoplasias Ovarianas/metabolismo , Ubiquitina-Proteína Ligases/biossíntese , Adulto , Povo Asiático/genética , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Estudos de Coortes , Progressão da Doença , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Prognóstico , Estudos Retrospectivos , Transcriptoma , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
19.
Biomed Pharmacother ; 125: 109946, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32004976

RESUMO

OBJECTIVES: Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one type of respiratory failure characterized by rapid onset of widespread inflammation in the lungs. Curcumin has been reported to be an anti-inflammatory factor through enhancing the function of regulatory T cells (Tregs). This study aimed to explore the effect of curcumin on the differentiation of Tregs and the role of curcumin in ALI/ARDS. METHODS: A cecal ligation and puncture (CLP)-induced acute lung injury mouse model was used to explore the effect of curcumin in ALI/ARDS. The severity of lung injury was evaluated. Immunohistochemistry of IL-17A and MPO in lung tissue was examined. Treg-related cytokine levels in serum and bronchoalveolar lavage fluid (BALF) were tested. The expression of nuclear factor-kappa B (NF-κB) in lung tissue was detected. Macrophages in lung tissue were detected by immunofluorescence. Splenic CD4+CD25+FOXP3+ Tregs were quantified, and the differentiation of Tregs from naïve CD4 + T cell and STAT5 was evaluated. The expression of IL-10 during naïve CD4 + T cell differentiation in vitro was tested. RESULTS: Curcumin alleviated lung injury in the induced CLP mouse model and suppressed inflammation. IL-17A, MPO-producing neutrophils, and NF-κB p65 expression in lungs of CLP mice decreased significantly after pretreatment with curcumin. We found curcumin could regulate M1/M2 macrophage levels in lungs of CLP mice. This may have been through regulating the differentiation of Tregs and the production of Treg-derived IL-10. Treg-derived IL-10 is the main factor that could affect macrophage polarization. We found curcumin could increase Treg proportions in vivo and up-regulate IL-10 expression in serum and BALF of CLP mice. In our in vitro experiments, we found curcumin could promote Treg differentiation and increase the production of IL-10. CONCLUSIONS: Curcumin can reduce the degree of severity of ALI and uncontrolled inflammation through promoting the differentiation of naïve CD4 + T cells to CD4+ CD25+ FOXP3+ Tregs. Curcumin promotes the conversion of macrophages from M1 to M2. The differentiation of Tregs induced by curcumin may be one source of IL-10 immune modulation.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Curcumina/farmacologia , Inflamação/prevenção & controle , Síndrome do Desconforto Respiratório/prevenção & controle , Lesão Pulmonar Aguda/imunologia , Animais , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação/imunologia , Interleucina-10/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Síndrome do Desconforto Respiratório/imunologia , Linfócitos T Reguladores/imunologia
20.
Ann Transl Med ; 8(23): 1568, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33437767

RESUMO

BACKGROUND: Sepsis is a deleterious systemic inflammatory response to infection, and despite advances in treatment, the mortality rate remains high. We hypothesized that plasma metabolism could clarify sepsis in patients complicated by organ dysfunction. METHODS: Plasma samples from 31 patients with sepsis and 23 healthy individuals of comparable age, gender, and body mass index (BMI) were collected. Plasma metabolites were detected through gas chromatography-mass spectrometry (GC-MS), and relevant metabolic pathways were predicted using the Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway database. Student's t-test was employed for statistical analysis. In addition, to explore sepsis organ dysfunction, plasma samples of sepsis patients were further analyzed by metabolomics subgroup analysis according to organ dysfunction. RESULTS: A total of 222 metabolites were detected, which included 124 metabolites with statistical significance between the sepsis and control groups. Among these, we found 26 were fatty acids, including 3 branched fatty acids, 10 were saturated fatty acids, and 13 were unsaturated fatty acids that were found in sepsis plasma samples but not in the controls. In addition, 158 metabolic pathways were predicted, 74 of which were significant. Further subgroup analysis identified seven metabolites in acute kidney injury (AKI), three metabolites in acute respiratory distress syndrome (ARDS), seven metabolites in sepsis-induced myocardial dysfunction (SIMD), and four metabolites in acute hepatic ischemia (AHI) that were significantly different. The results showed that the sepsis samples exhibited extensive changes in amino acids, fatty acids, and tricarboxylic acid (TCA)-cycle products. In addition, three metabolic pathways-namely, energy metabolism, amino acid metabolism, and lipid metabolism-were downregulated in sepsis patients. CONCLUSIONS: The downregulated energy, amino acid, and lipid metabolism found in our study may serve as a novel clinical marker for the dysregulated internal environment, particularly involving energy metabolism, which results in sepsis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...