Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 52(2): 126-134, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38050044

RESUMO

Cytochrome P450 3A (CYP3A) participates in the metabolism of more than 30% of clinical drugs. The vast intra- and inter-individual variations in CYP3A activity pose great challenges to drug development and personalized medicine. It has been disclosed that human CYP3A4 and CYP3A7 are exclusively responsible for the tertiary oxidations of deoxycholic acid (DCA) and glycodeoxycholic acid (GDCA) regioselectivity at C-1ß and C-5ß This work aimed to compare the 1ß- and 5ß-hydroxylation of DCA and GDCA as potential in vitro CYP3A index reactions in both human liver microsomes and recombinant P450 enzymes. The results demonstrated that the metabolic activity of DCA 1ß- and 5ß-hydroxylation was 5-10 times higher than that of GDCA, suggesting that 1ß-hydroxyglycodeoxycholic acid and 5ß-hydroxyglycodeoxycholic acid may originate from DCA oxidation followed by conjugation in humans. Metabolic phenotyping data revealed that DCA 1ß-hydroxylation, DCA 5ß-hydroxylation, and GDCA 5ß-hydroxylation were predominantly catalyzed by CYP3A4 (>80%), while GDCA 1ß-hydroxylation had approximately equal contributions from CYP3A4 (41%) and 3A7 (58%). Robust Pearson correlation was established for the intrinsic clearance of DCA 1ß- and 5ß-hydroxylation with midazolam (MDZ) 1'- and 4-hydroxylation in fourteen single donor microsomes. Although DCA 5ß-hydroxylation exhibited a stronger correlation with MDZ oxidation, DCA 1ß-hydroxylation exhibited higher reactivity than DCA 5ß-hydroxylation. It is therefore suggested that DCA 1ß- and 5ß-hydroxylations may serve as alternatives to T 6ß-hydroxylation as in vitro CYP3A index reactions. SIGNIFICANCE STATEMENT: The oxidation of DCA and GDCA is primarily catalyzed by CYP3A4 and CYP3A7. This work compared the 1ß- and 5ß-hydroxylation of DCA and GDCA as in vitro index reactions to assess CYP3A activities. It was disclosed that the metabolic activity of DCA 1ß- and 5ß-hydroxylation was 5-10 times higher than that of GDCA. Although DCA 1ß-hydroxylation exhibited higher metabolic activity than DCA 5ß-hydroxylation, DCA 5ß-hydroxylation demonstrated stronger correlation with MDZ oxidation than DCA 1ß-hydroxylation in individual liver microsomes.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Humanos , Citocromo P-450 CYP3A/metabolismo , Hidroxilação , Ácido Glicodesoxicólico/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução , Microssomos Hepáticos/metabolismo , Midazolam/metabolismo
2.
Drug Metab Dispos ; 50(6): 741-749, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35351776

RESUMO

Cytochrome P450 3A (CYP3A), the most important class of drug-metabolizing enzymes, participates in the metabolism of half of clinically used drugs. The CYP3A index reactions of dogs, one of the most widely used preclinical nonrodent species, are still poorly understood. This work evaluated the activity and selectivity of 10 CYP3A index reactions, including midazolam (MDZ) 1'- and 4-hydroxylation, alprazolam (APZ) and triazolam (TRZ) α- and 4-hydroxylation, testosterone (T) 6ß-hydroxylation, lithocholate (LCA) 6α-hydroxylation, deoxycholate (DCA) 1ß- and 5ß-hydroxylation, with quantitative reaction phenotyping and kinetic analysis in human and canine recombinant CYP enzymes (rCYPs). In human studies, all reactions are reconfirmed as mixed index reactions of CYP3A with minor contributions from non-CYP3A isoforms. In canine studies, all reactions are also primarily catalyzed by CYP3A12 with lower contributions from CYP3A26. However, the canine CYP2B11 appreciably contributes to the hydroxylation of benzodiazepines except for APZ 4-hydroxylation. The canine CYP3A isoforms have lower activity than human isoforms toward T 6ß-hydroxylation and LCA 6α-hydroxylation and both substrates undergo non-CYP3A catalyzed side reactions. DCA 1ß- and 5ß-hydroxylation are validated as the CYP3A index reactions in both humans and dogs with limited non-CYP3A contributions and side reactions. In conclusion, this work provides a comprehensive overview for the selectivity and activity of in vitro CYP3A index reactions in humans and dogs. The validated CYP3A index reactions between humans and dogs may benefit future practices in drug metabolism and drug interaction studies. SIGNIFICANCE STATEMENT: Dogs are one of the most important nonrodent animals with limited studies of cytochrome P450 enzymes than humans. This work provides the most comprehensive quantitative data to date for the selectivity and activity of CYP3A index reactions in humans and dogs. The canine CYP2B11 was found to appreciably contribute to hydroxylation of midazolam, alprazolam and triazolam, the well-known probes for human CYP3A. Deoxycholate 1ß- and 5ß-hydroxylation are validated as the CYP3A index reactions in both humans and dogs.


Assuntos
Citocromo P-450 CYP3A , Triazolam , Alprazolam/metabolismo , Animais , Benzodiazepinas/metabolismo , Citocromo P-450 CYP3A/metabolismo , Ácido Desoxicólico/metabolismo , Cães , Humanos , Hidroxilação , Cinética , Microssomos Hepáticos/metabolismo , Midazolam/metabolismo , Isoformas de Proteínas/metabolismo , Especificidade da Espécie , Esteroides/metabolismo , Triazolam/metabolismo
3.
Front Pharmacol ; 12: 741724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759821

RESUMO

Background: Pharmacist's direct intervention or participation in multidisciplinary management teams can improve the clinical outcome and quality of life of patients. We aimed to determine the effectiveness of pharmacist-led interventions on the inappropriate use of stress ulcer prophylaxis (SUP) pharmacotherapy in intensive care units (ICUs). Methods: A systematic review was performed for relevant studies using searched PubMed, EMBASE (Ovid), the Cochrane Library, Cochrane Central Register of Controlled Trials (CENTRAL), and four Chinese databases from the establishment of databases to 12 March 2020. We conducted a descriptive analysis of participants, the intervention content and delivery, and the effects on inappropriate medication rates. Results: From 529 records, 8 studies from 9 articles were included in the systematic review. The time of appropriateness judgment and the criteria of "appropriate" varied from included studies. Pharmacist interventions mainly included clarifying indications for SUP pharmacotherapy, education and awareness campaign, reviewed patients on SUP pharmacotherapy during rounds, and adjustments of drug use. Five (62.5%) studies found a significant intervention effect during hospitalization, while 2 (25%) studies at ICU transfer and 2 (25%) studies at hospital discharge. 4 (50%) studies identified the complications related to SUP pharmacotherapy and found no significant difference. 4 (50%) studies declared the pharmacist-led interventions were associated with cost savings. Conclusion: Pharmacist-led intervention is associated with a decrease in inappropriate use of SUP pharmacotherapy during hospitalization, at ICU transferred and hospital discharged, and a lot of medical cost savings. Further research is needed to determine whether pharmacist-led intervention is cost-effective.

4.
Eur J Pharm Sci ; 146: 105262, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32060005

RESUMO

Supersaturation drug delivery system (SDDS) based on amorphous solid dispersion (ASD) is a widely used strategy to improve oral absorption of poorly water-soluble drugs by achieving a supersaturated state where drug concentration is significantly higher than drug solubility. However, dissolved drugs tend to recrystallize in gastrointestinal (GI) tract if without effective stabilizing excipients. In this paper, well-recognized polymer (polyvinylpyrrolidone, PVP) and lipid (phosphatidylcholine, PC) excipients are combined as ASD carrier, aiming at investigating the effects on evolution of in vitro supersaturation and in vivo plasma concentration of a model poorly soluble drug indomethacin (IND). Fundamental aspects including polymer/lipid composition ratio, drug loading (DL) degree and administration dose were investigated. The in vitro dissolution profiles of ASDs were assessed by supersaturation degree, duration, maximum achievable drug concentration and dose-normalized efficiency, and correlated with in vivo pharmacokinetic data. Results showed that both in vitro and in vivo concentration-time profiles of IND were significantly varying with abovementioned factors. Solution viscosity, solid-state properties and morphology of ASDs were related to the results. This study revealed fundamental mechanisms of PVP/PC mixture effect on IND supersaturation and oral bioavailability, demonstrating that polymer/lipid mixture could be used as a promising carrier to alter supersaturation profile and oral bioavailability of SDDS products.


Assuntos
Anti-Inflamatórios não Esteroides/sangue , Indometacina/sangue , Modelos Químicos , Fosfatidilcolinas/química , Povidona/química , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Sistemas de Liberação de Medicamentos , Excipientes , Indometacina/química , Indometacina/farmacocinética , Masculino , Ratos , Ratos Sprague-Dawley , Solubilidade , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...