Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 38(2): 398-413, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29242270

RESUMO

OBJECTIVE: Intermedin plays an important role in vascular remodeling and significantly improves blood perfusion, but the precise mechanism remains unclear. Herein, we aimed to define whether vascular lumen enlargement is responsible for the intermedin-increased blood perfusion and explore the underlying cellular and molecular mechanisms. APPROACH AND RESULTS: To study the role of intermedin, we generated the IMD-KO (Adm2-/-) mice using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) system. Intermedin significantly promoted vascular lumen enlargement in vitro (fibrin beads assay) and in vivo (murine retinas), which contributed to the improved blood perfusion in both physiological (retinal) and pathological (tumor) angiogenic models. We designed experiments to calculate the endothelial cell (EC) size and found that the lumen enlargement is because of EC proliferation but not because of a change in cell shape. ECs that construct vessel walls are considered quiescent cells because they are in a state of contact inhibition and show reduced responsiveness to VEGF (vascular endothelial growth factor). Using immunoprecipitation, Western blot assay, and fluorescent microscopy, we found that intermedin induced the formation of a signaling complex containing CRLR (calcitonin receptor-like receptor)/ß-arr1 (ß-arrestin1)/Src in ECs and promoted it internalizing into cytoplasm in a clathrin-dependent manner to activate downstream ERK1/2 (extracellular signal-regulated kinase 1/2). Importantly, this effect was not abrogated by cell-cell contacts of ECs. Through this mechanism, intermedin could reactivate the quiescent ECs to proliferate, resulting in continuous lumen expanding and a more effective blood perfusion. CONCLUSIONS: Our findings suggest a novel mechanism that may explain how quiescent ECs overcome the contact inhibition and regain the ability to proliferate for continuous vascular lumen enlargement.


Assuntos
Carcinoma Pulmonar de Lewis/irrigação sanguínea , Proliferação de Células , Senescência Celular , Neoplasias do Colo/irrigação sanguínea , Células Endoteliais/metabolismo , Neovascularização Patológica , Neovascularização Fisiológica , Neuropeptídeos/metabolismo , Vasos Retinianos/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Fluxo Sanguíneo Regional , Transdução de Sinais , Remodelação Vascular
2.
Biochem Biophys Res Commun ; 458(1): 174-9, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25637664

RESUMO

Vessel sprouting from pre-existing vasculature is a key step for the formation of a functional vasculature. The low level of vascular endothelial growth factor (VEGF) induces normal and stable angiogenesis, whereas high level of VEGF causes irregular and over sprouted vasculature. Intermedin (IMD) is a novel member of calcitonin family, and was found to be able to restrict the excessive vessel sprouting. However, the underlying mechanism had not been elucidated. In this study, using in vitro and in vivo angiogenic models, we found that the loosening of endothelial junction could significantly increase the ability of low-dose VEGF to induce vessel sprouting. IMD inhibited the junction dissociation-induced vessel sprouting by re-establishing the complex of vascular endothelial cadherin on the cell-cell contact. Our findings suggested a novel mechanism through which IMD could restrict the excessive vessel sprouting by preventing the endothelial junction from dissociation, and provide new insight into the understanding of the regulation of sprouting angiogenesis.


Assuntos
Hormônios Peptídicos/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Junções Intercelulares/metabolismo , Camundongos Endogâmicos C57BL , Neuropeptídeos/metabolismo , Hormônios Peptídicos/farmacologia , Retina/citologia , Retina/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...