Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1219856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621887

RESUMO

BRI1 EMS SUPPRESSOR1 (BES1) family members are crucial downstream regulators that positively mediate brassinosteroid signaling, playing vital roles in the regulation of plant stress responses and anther development in Arabidopsis. Importantly, the expression profiles of wheat (Triticum aestivum L.) BES1 genes have not been analyzed comprehensively and systematically in response to abiotic stress or during anther development. In this study, we identified 23 BES1-like genes in common wheat, which were unevenly distributed on 17 out of 21 wheat chromosomes. Phylogenetic analysis clustered the BES1 genes into four major clades; moreover, TaBES1-3A2, TaBES1-3B2 and TaBES1-3D2 belonged to the same clade as Arabidopsis BES1/BZR1 HOMOLOG3 (BEH3) and BEH4, which participate in anther development. The expression levels of 23 wheat BES1 genes were assessed using real-time quantitative PCR under various abiotic stress conditions (drought, salt, heat, and cold), and we found that most TaBES1-like genes were downregulated under abiotic stress, particularly during drought stress. We therefore used drought-tolerant and drought-sensitive wheat cultivars to explore TaBES1 expression patterns under drought stress. TaBES1-3B2 and TaBES1-3D2 expression was high in drought-tolerant cultivars but substantially repressed in drought-sensitive cultivars, while TaBES1-6D presented an opposite pattern. Among genes preferentially expressed in anthers, TaBES1-3B2 and TaBES1-3D2 expression was substantially downregulated in thermosensitive genic male-sterile wheat lines compared to common wheat cultivar under sterile conditions, while we detected no obvious differences under fertile conditions. This result suggests that TaBES1-3B2 and TaBES1-3D2 might not only play roles in regulating drought tolerance, but also participate in low temperature-induced male sterility.

2.
New Phytol ; 239(1): 102-115, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36994607

RESUMO

Sporopollenin is one of the most structurally sophisticated and chemically recalcitrant biopolymers. In higher plants, sporopollenin is the dominant component of exine, the outer wall of pollen grains, and contains covalently linked phenolics that protect the male gametes from harsh environments. Although much has been learned about the biosynthesis of sporopollenin precursors in the tapetum, the nutritive cell layer surrounding developing microspores, little is known about how the biopolymer is assembled on the microspore surface. We identified SCULP1 (SKS clade universal in pollen) as a seed plant conserved clade of the multicopper oxidase family. We showed that SCULP1 in common wheat (Triticum aestivum) is specifically expressed in the microspore when sporopollenin assembly takes place, localized to the developing exine, and binds p-coumaric acid in vitro. Through genetic, biochemical, and 3D reconstruction analyses, we demonstrated that SCULP1 is required for p-coumaroylation of sporopollenin, exine integrity, and pollen viability. Moreover, we found that SCULP1 accumulation is compromised in thermosensitive genic male sterile wheat lines and its expression partially restored exine integrity and male fertility. These findings identified a key microspore protein in autonomous sporopollenin polymer assembly, thereby laying the foundation for elucidating and engineering sporopollenin biosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Triticum/genética , Triticum/metabolismo , Biopolímeros/metabolismo , Pólen/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562932

RESUMO

The calmodulin-binding transcription activator (CAMTA) is a Ca2+/CaM-mediated transcription factor (TF) that modulates plant stress responses and development. Although the investigations of CAMTAs in various organisms revealed a broad range of functions from sensory mechanisms to physiological activities in crops, little is known about the CAMTA family in wheat (Triticum aestivum L.). Here, we systematically analyzed phylogeny, gene expansion, conserved motifs, gene structure, cis-elements, chromosomal localization, and expression patterns of CAMTA genes in wheat. We described and confirmed, via molecular evolution and functional verification analyses, two new members of the family, TaCAMTA5-B.1 and TaCAMTA5-B.2. In addition, we determined that the expression of most TaCAMTA genes responded to several abiotic stresses (drought, salt, heat, and cold) and ABA during the seedling stage, but it was mainly induced by drought stress. Our study provides considerable information about the changes in gene expression in wheat under stress, notably that drought stress-related gene expression in TaCAMTA1b-B.1 transgenic lines was significantly upregulated under drought stress. In addition to providing a comprehensive view of CAMTA genes in wheat, our results indicate that TaCAMTA1b-B.1 has a potential role in the drought stress response induced by a water deficit at the seedling stage.


Assuntos
Secas , Triticum , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/metabolismo
4.
World J Clin Cases ; 9(34): 10738-10745, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-35005010

RESUMO

BACKGROUND: Keratinized gingival insufficiency is a disease attributed to long-term tooth loss, can severely jeopardizes the long-term health of implants. A simple and effective augmentation surgery method should be urgently developed. CASE SUMMARY: A healthy female patient, 45-year-old, requested implant restoration of the her left mandibular first molar and second molar. Before considering a stage II, as suggested from the probing depth measurements, the widths of the mesial, medial, and distal buccal keratinized gingiva of second molar (tooth #37) were measured and found to be 0.5 mm, 0.5 mm, and 0 mm, respectively. This suggested that the gingiva was insufficient to resist damage from bacterial and mechanical stimulation. Accordingly, modified apically repositioned flap (ARF) surgery combined with xenogeneic collagen matrix (XCM) and platelet-rich fibrin (PRF) was employed to increase the width of gingival tissue. After 1 mo of healing, the widths of mesial, medial, and distal buccal keratinized gingiva reached 4 mm, 4 mm, and 3 mm, respectively, and the thickness of the augmented mucosa was 4.5 mm. Subsequently, through the second-stage operation, the patient obtained an ideal soft tissue shape around the implant. CONCLUSION: For cases with keratinized gingiva widths around implants less than 2mm,the soft tissue width and thickness could be increased by modified ARF surgery combined with XCM and PRF. Moreover, this surgery significantly alleviated patients' pain and ameliorated oral functional comfort.

5.
Biomed Res Int ; 2020: 9708324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224986

RESUMO

OVATE family proteins (OFPs) are plant-specific transcription factors that play important roles in plant development. Although common wheat (Triticum aestivum L.) is a major staple food worldwide, OFPs have not been systematically analyzed in this important crop. Here, we performed a genome-wide survey of OFP genes in wheat and identified 100 genes belonging to 34 homoeologous groups. Arabidopsis thaliana, rice (Oryza sativa), and wheat OFP genes were divided into four subgroups based on their phylogenetic relationships. Structural analysis indicated that only four TaOFPs contain introns. We mapped the TaOFP genes onto the wheat chromosomes and determined that TaOFP17 was duplicated in this crop. A survey of cis-acting elements along the promoter regions of TaOFP genes suggested that subfunctionalization of homoeologous genes might have occurred during evolution. The TaOFPs were highly expressed in wheat, with tissue- or organ-specific expression patterns. In addition, these genes were induced by various hormone and stress treatments. For instance, TaOPF29a-A was highly expressed in roots in response to drought stress. Wheat plants overexpressing TaOPF29a-A had longer roots and higher dry weights than nontransgenic plants under drought conditions, suggesting that this gene improves drought tolerance. Our findings provide a starting point for further functional analysis of this important transcription factor family and highlight the potential of using TaOPF29a-A to genetically engineer drought-tolerant crops.


Assuntos
Proteínas de Plantas/genética , Triticum/fisiologia , Arabidopsis/genética , Mapeamento Cromossômico , Secas , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Família Multigênica , Oryza/genética , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Triticum/genética
6.
Front Plant Sci ; 11: 586144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101350

RESUMO

AUXIN RESPONSE FACTOR (ARF) proteins regulate a wide range of signaling pathways, from general plant growth to abiotic stress responses. Here, we performed a genome-wide survey in wheat (Triticum aestivum) and identified 69 TaARF members that formed 24 homoeologous groups. Phylogenetic analysis clustered TaARF genes into three clades, similar to ARF genes in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Structural characterization suggested that ARF gene structure and domain composition are well conserved between plant species. Expression profiling revealed diverse patterns of TaARF transcript levels across a range of developmental stages, tissues, and abiotic stresses. A number of TaARF genes shared similar expression patterns and were preferentially expressed in anthers. Moreover, our systematic analysis identified three anther-specific TaARF genes (TaARF8, TaARF9, and TaARF21) whose expression was significantly altered by low temperature in thermosensitive genic male-sterile (TGMS) wheat; these TaARF genes are candidates to participate in the cold-induced male sterility pathway, and offer potential applications in TGMS wheat breeding and hybrid seed production. Moreover, we identified putative functions for a set of TaARFs involved in responses to abscisic acid and abiotic stress. Overall, this study characterized the wheat ARF gene family and generated several hypotheses for future investigation of ARF function during anther development and abiotic stress.

7.
J Biomed Nanotechnol ; 15(4): 813-821, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30841973

RESUMO

Photothermal therapy (PTT) is a recently developed and promising strategy for the treatment of hepatocellular carcinoma (HCC). However, apoptosis has been extensively investigated as the mechanism of the underlying effect of PTT on cancer to date. Here, we explored alternative mechanisms of these therapeutic effects, including the activation of cell-cycle arrest and autophagy during PTT in addition to apoptosis under mild temperature. We treated the HCC cell line HepG2 with polydopamine (PDA)-coated branched Au-Ag nanoparticles at various concentrations along with PTT using an 808-nm laser. Apoptosis was evaluated based on flow cytometry, western blot analysis of apoptosis related proteins (BAX, BCL2, caspase 3), Hoechst staining, and TUNEL staining. To explore the role of autophagy, we treated cells with the autophagy inhibitor chloroquine diphosphate. Enhancement of apoptosis by PTT with nanoparticle treatment was observed after autophagy was inhibited. Moreover, inhibition of autophagy markedly enhance the suppression of tumor growth in vivo in a HepG2 mouse xenograft model. These results suggest that further exploration of the mechanism of PTT can help guide its clinical application, and that autophagy inhibition combined with PTT could be a promising strategy for HCC treatment.


Assuntos
Autofagia , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Apoptose , Linhagem Celular Tumoral , Humanos , Nanopartículas Metálicas , Camundongos , Prata
8.
J Biomed Nanotechnol ; 13(9): 1115-1123, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251144

RESUMO

Both photothermal therapy (PTT) and photodynamic therapy (PDT) are phototherapeutic approaches, which have been widely investigated for cancer therapy mediated by near infrared (NIR) light irradiation. Here, we successfully constructed a single-light triggered indocyanine green (ICG)-loaded gold nanocomposites which were composed of gold nanoflower core/two layers silica shell (AuNFs@SiO2@mSiO2-ICG) for enhanced PDT/PTT synergistic effect to oral carcinoma. The AuNFs@SiO2@mSiO2-ICG nanocomposites had no obviously cytotoxicity and could effectively arrest Cal27 cells in the G1 phase. Moreover, the conjugation of ICG caused significantly higher reactive oxygen species (ROS) productivity and apoptotic Cal27 cells compared to free ICG or free AuNFs@SiO2@mSiO2. In this study, compared with PTT or PDT alone, synchronous PTT and PDT produced by AuNFs@SiO2@mSiO2-ICG under NIR light irradiation induced enhanced Cal27 cells lethality in vitro and tumor growth inhibition in vivo, which might be a promising strategy for cancer treatment.

9.
J Basic Microbiol ; 53(2): 181-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22581711

RESUMO

The rutin degrading enzyme (RDE) was isolated and purified from tartary buckwheat seeds. The RDE was purified about 11.34-fold and its final yield was 3.5%, which was very low, due to our purification strategy of giving priority to purity over yield. The RDE molecular weight was estimated to be about 60 kDa. When rutin was used as substrate, an optimal enzyme activity was seen at around pH 5.0 and 40 °C. Strains isolation strategy characterized by the use of rutin as sole carbon source in enrichment cultures was used to isolate RDE-producing strains. Then the active strains were identified by morphology characterization and 18s rDNA-ITS (Internal Transcribed Spacer) gene sequencing. Three isolates coded as B3, W2, Y2 were successfully isolated from fusty Fagopyrum tataricum flour cultures. Strain B3 possessed the highest unit activity among these three strains, and its total activity reached up to 171.0 Unit. The active isolate (B3) could be assigned to Penicillium farinosum. When the Penicillium farinosum strains were added to tartary buckwheat flour cultures at pH 5.0, 30 °C after 5 days fermentation, the quercetin production raised up to 1.78 mg/l, almost 5.1 times higher than the fermentation without the above active strains. Hence, a new approach was available to utilize microorganism-aided fermentation for effective quercetin extraction from Fagopyrum tataricum seeds.


Assuntos
Enzimas/isolamento & purificação , Enzimas/metabolismo , Fagopyrum/enzimologia , Rutina/metabolismo , Biotransformação , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Enzimas/química , Concentração de Íons de Hidrogênio , Peso Molecular , Penicillium/classificação , Penicillium/genética , Penicillium/isolamento & purificação , Sementes/enzimologia , Análise de Sequência de DNA , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...