Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1768: 147590, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34310936

RESUMO

Depression, rapid eye movement (REM) sleep behavior disorder, and altered olfaction are often present in Parkinson's disease. Our previous studies demonstrated the role of the olfactory bulb (OB) in causing REM sleep disturbances in depression. Furthermore, adenosine A2A receptors (A2AR) which are richly expressed in the OB, play an important role in the regulation of REM sleep. Caffeine, an adenosine A1 receptors and A2AR antagonist, and other A2AR antagonists were reported to improve olfactory function and restore age-related olfactory deficits. Therefore, we hypothesized that the A2AR neurons in the OB may regulate olfaction or odor-guided behaviors in mice. In the present study, we employed chemogenetics to specifically activate or inhibit neuronal activity. Then, buried food test and olfactory habituation/dishabituation test were performed to measure the changes in the mice's olfactory ability. We demonstrated that activation of OB neurons or OB A2AR neurons shortened the latency of buried food test and enhanced olfactory habituation to the same odors and dishabituation to different odors; inhibition of these neurons showed the opposite effects. Photostimulation of ChR2-expressing OB A2AR neuron terminals evoked inward current in the olfactory tubercle (OT) and the piriform cortex (Pir), which was blocked by glutamate receptor antagonists 2-amino-5-phosphonopentanoic acid and 6-cyano-7nitroquinoxaline-2,3-dione. Collectively, these results suggest that the OB mediates olfaction via A2AR neurons in mice. Moreover, the excitatory glutamatergic release from OB neurons to the OT and the Pir were found responsible for the olfaction-mediated effects of OB A2AR neurons.


Assuntos
Receptor A2A de Adenosina/metabolismo , Olfato/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Odorantes , Bulbo Olfatório/metabolismo , Córtex Olfatório/metabolismo , Percepção Olfatória/fisiologia , Córtex Piriforme/metabolismo , Receptor A2A de Adenosina/fisiologia
2.
Front Neurosci ; 15: 645877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841086

RESUMO

Activation of the parabrachial nucleus (PB) in the brainstem induced wakefulness in rats, suggesting which is an important nucleus that controls arousal. However, the sub-regions of PB in regulating sleep-wake cycle is still unclear. Here, we employ chemogenetics and optogenetics strategies and find that activation of the medial part of PB (MPB), but not the lateral part, induces continuous wakefulness for 10 h without sleep rebound in neither sleep amount nor the power spectra. Optogenetic activation of glutamatergic MPB neurons in sleeping rats immediately wake rats mediated by the basal forebrain (BF) and lateral hypothalamus (LH), but not the ventral medial thalamus. Most importantly, chemogenetic inhibition of PB neurons decreases wakefulness for 10 h. Conclusively, these findings indicate that the glutamatergic MPB neurons are essential in controlling wakefulness, and that MPB-BF and MPB-LH pathways are the major neuronal circuits.

3.
PLoS Biol ; 16(4): e2002909, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29652889

RESUMO

The rostromedial tegmental nucleus (RMTg), also called the GABAergic tail of the ventral tegmental area, projects to the midbrain dopaminergic system, dorsal raphe nucleus, locus coeruleus, and other regions. Whether the RMTg is involved in sleep-wake regulation is unknown. In the present study, pharmacogenetic activation of rat RMTg neurons promoted non-rapid eye movement (NREM) sleep with increased slow-wave activity (SWA). Conversely, rats after neurotoxic lesions of 8 or 16 days showed decreased NREM sleep with reduced SWA at lights on. The reduced SWA persisted at least 25 days after lesions. Similarly, pharmacological and pharmacogenetic inactivation of rat RMTg neurons decreased NREM sleep. Electrophysiological experiments combined with optogenetics showed a direct inhibitory connection between the terminals of RMTg neurons and midbrain dopaminergic neurons. The bidirectional effects of the RMTg on the sleep-wake cycle were mimicked by the modulation of ventral tegmental area (VTA)/substantia nigra compacta (SNc) dopaminergic neuronal activity using a pharmacogenetic approach. Furthermore, during the 2-hour recovery period following 6-hour sleep deprivation, the amount of NREM sleep in both the lesion and control rats was significantly increased compared with baseline levels; however, only the control rats showed a significant increase in SWA compared with baseline levels. Collectively, our findings reveal an essential role of the RMTg in the promotion of NREM sleep and homeostatic regulation.


Assuntos
Movimentos Oculares/fisiologia , Vias Neurais/fisiologia , Receptores Muscarínicos/genética , Sono/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Núcleo Dorsal da Rafe/anatomia & histologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Núcleo Dorsal da Rafe/fisiologia , Eletrodos Implantados , Eletroencefalografia , Genes Reporter , Ácido Ibotênico/toxicidade , Locus Cerúleo/anatomia & histologia , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/fisiologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Mesencéfalo/anatomia & histologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/efeitos dos fármacos , Optogenética , Parte Compacta da Substância Negra/anatomia & histologia , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/metabolismo , Privação do Sono/fisiopatologia , Técnicas Estereotáxicas , Área Tegmentar Ventral/anatomia & histologia , Área Tegmentar Ventral/efeitos dos fármacos , Vigília/fisiologia , Ácido gama-Aminobutírico/metabolismo , Proteína Vermelha Fluorescente
4.
Sleep Biol Rhythms ; 15(2): 107-115, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386207

RESUMO

The ventral tegmental area (VTA) is crucial for brain functions, such as voluntary movement and cognition; however, the role of VTA in sleep-wake regulation when directly activated or inhibited remains unknown. In this study, we investigated the effects of activation or inhibition of VTA neurons on sleep-wake behavior using the pharmacogenetic "designer receptors exclusively activated by designer drugs (DREADD)" approach. Immunohistochemistry staining was performed to confirm the microinjection sites, and combined with electrophysiological experiments, to determine whether the VTA neurons were activated or inhibited. The hM3Dq-expressing VTA neurons were excited confirmed by clozapine-N-oxide (CNO)-driven c-Fos expression and firing in patch-clamp recordings; whereas the hM4Di-expressing VTA neurons inhibited by reduction of firing. Compared with controls, the activation of VTA neurons at 9:00 (inactive period) produced a 120.1% increase in the total wakefulness amount for 5 h, whereas NREM and REM sleep were decreased by 62.5 and 92.2%, respectively. Similarly, when VTA neurons were excited at 21:00 (active period), the total wakefulness amount increased 81.5%, while NREM and REM sleep decreased 64.6 and 93.8%, respectively, for 8 h. No difference of the amount and EEG power density of the NREM sleep was observed following the arousal effects of CNO. The inhibition of VTA neurons during active or inactive periods gave rise to no change in the time spent in the wakefulness, REM, and NREM sleep compared with control. The results indicated that VTA neurons activated pharmacogentically played important roles in promoting wakefulness.

5.
Light Sci Appl ; 6(5): e16231, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-30167247

RESUMO

Sleep is regulated by two mechanisms: the homeostatic process and the circadian clock. Light affects sleep and alertness by entraining the circadian clock, and acutely inducing sleep/alertness, in a manner mediated by intrinsically photosensitive retinal ganglion cells. Because intrinsically photosensitive retinal ganglion cells are believed to be minimally sensitive to red light, which is widely used for illumination to reduce the photic disturbance to nocturnal animals during the dark phase. However, the appropriate intensity of the red light is unknown. In the present study, we recorded electroencephalograms and electromyograms of freely moving mice to investigate the effects of red light emitted by light-emitting diodes at different intensities and for different durations on the sleep-wake behavior of mice. White light was used as a control. Unexpectedly, red light exerted potent sleep-inducing effects and changed the sleep architecture in terms of the duration and number of sleep episodes, the stage transition, and the EEG power density when the intensity was >20 lx. Subsequently, we lowered the light intensity and demonstrated that red light at or below 10 lx did not affect sleep-wake behavior. White light markedly induced sleep and disrupted sleep architecture even at an intensity as low as 10 lx. Our findings highlight the importance of limiting the intensity of red light (⩽10 lx) to avoid optical influence in nocturnal behavioral experiments, particularly in the field of sleep and circadian research.

6.
Brain Struct Funct ; 222(3): 1351-1366, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27485749

RESUMO

Rapid eye movement (REM) sleep behavior disorder in humans is often accompanied by a reduced ability to smell and detect odors, and olfactory bulbectomized rats exhibit increased REM sleep, suggesting that the olfactory bulb (OB) is involved in REM-sleep regulation. However, the molecular mechanism of REM-sleep regulation by the OB is unknown. Adenosine promotes sleep and its A2A receptors (A2AR) are expressed in the OB. We hypothesized that A2AR in the OB regulate REM sleep. Bilateral microinjections of the A2AR antagonist SCH58261 into the rat OB increased REM sleep, whereas microinjections of the A2AR agonist CGS21680 decreased REM sleep. Similar to the A2AR antagonist, selective A2AR knockdown by adeno-associated virus carrying short-hairpin RNA for A2AR in the rat OB increased REM sleep. Using chemogenetics on the basis of designer receptors exclusively activated by designer drugs, we demonstrated that the inhibition of A2AR neurons increased REM sleep, whereas the activation of these neurons decreased REM sleep. Moreover, using a conditional anterograde axonal tract-tracing approach, we found that OB A2AR neurons innervate the piriform cortex and olfactory tubercle. These novel findings indicate that adenosine suppresses REM sleep via A2AR in the OB of rodents.


Assuntos
Bulbo Olfatório/fisiologia , Receptor A2A de Adenosina/metabolismo , Sono REM/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Análise de Variância , Animais , Dependovirus/genética , Relação Dose-Resposta a Droga , Eletroencefalografia , Eletromiografia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Bulbo Olfatório/efeitos dos fármacos , Técnicas de Patch-Clamp , Fenetilaminas/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Pirimidinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor A2A de Adenosina/genética , Sono REM/genética , Transdução Genética , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...