Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 331: 118233, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38685365

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Moshen Fuyuan Formula (MSFY) is one of the representative Chinese medicine compound for Idiopathic membranous nephropathy (IMN), that originate from Fang Ji Huang Qi decoction in the Han dynasty. IMN is usually accompanied by different tongue coatings in traditional Chinese medicine (TCM), and tongue microorganisms are important factors affecting the formation of the tongue coating. Recently, oral microbiomes, including bacteria and fungi, have been identified as pivotal factors that contribute to disease development. However, the regulation of oral microbiomes by MSFY has not been defined. AIM OF THE STUDY: In this work, we explore the characteristics of oral bacteria and fungi in IMN patients with different tongue coatings, and clarify the therapeutic effect of MSFY based on oral microbiome. MATERIALS AND METHODS: We enrolled 24 patients with IMN, including 11 with white tongue (IMN-W) and 13 with yellow tongue (IMN-Y), and recruited an additional 10 healthy individuals. Patients with IMN were treated with the MSFY. The oral bacteriome and fungi before and after treatment were detected using full-length 16S rRNA and internal transcribed spacer gene sequencing. RESULTS: The therapeutic effect of MSFY on patients with yellow tongue coating was more significant than that on patients with white tongue coating. In terms of oral bacteriome, Campylobacter bacteria were enriched in patients with yellow tongue and could be a promising biomarker for yellow coating. Enrichment of Veillonella parvula_A may partially account for the therapeutic effect of MSFY. As for oral fungi, Malassezia globosa was enhanced in patients with IMN-W and reduced in patients with IMN-Y. Notably, it was reduced by MSFY. We also found that mycobiome-bacteriome interactions were highly complex and dynamic in patients with IMN. CONCLUSION: The regulation of the dynamic balance between oral fungi and bacteria by MSFY contributes to the treatment of IMN. This study determined the oral bacteriome and mycobiome of patients with IMN with different tongue coatings before and after MSFY treatment, which aids in promoting personalized treatment in clinical TCM and provides direction for investigating the mechanism of Chinese herbal medicines.

2.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240100

RESUMO

SPX-domain proteins (small proteins with only the SPX domain) have been proven to be involved in phosphate-related signal transduction and regulation pathways. Except for OsSPX1 research showing that it plays a role in the process of rice adaptation to cold stress, the potential functions of other SPX genes in cold stress are unknown. Therefore, in this study, we identified six OsSPXs from the whole genome of DXWR. The phylogeny of OsSPXs has a strong correlation with its motif. Transcriptome data analysis showed that OsSPXs were highly sensitive to cold stress, and real-time PCR verified that the levels of OsSPX1, OsSPX2, OsSPX4, and OsSPX6 in cold-tolerant materials (DXWR) during cold treatment were higher than that of cold-sensitive rice (GZX49). The promoter region of DXWR OsSPXs contains a large number of cis-acting elements related to abiotic stress tolerance and plant hormone response. At the same time, these genes have expression patterns that are highly similar to cold-tolerance genes. This study provides useful information about OsSPXs, which is helpful for the gene-function research of DXWR and genetic improvements during breeding.


Assuntos
Oryza , Oryza/fisiologia , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Temperatura Baixa
3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(6): 1724-1729, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36476895

RESUMO

OBJECTIVE: To investigate the effect and mechanism of artesunate (ARTS) combined with cytarabine(Ara-C) and/or daunorubicin (DNR) on the proliferation and apoptosis of MV4-11 human mixed-lineage leukemia rearranged(MLL-r) acute myeloid leukemia (AML) cell line. METHODS: CCK-8 assay was used to detect the proliferation effect of individual or in combination of ARTS, DNR, Ara-C on MV4-11 cells. The IC50 of ARTS, DNR and Ara-C was calculated separately. The cell apoptosis and expression of receptors DR4 and DR5 were detected by flow cytometry. Western blot was used to detect the expression of Caspase-3 and Caspase-9 in each groups. RESULTS: The inhibition effect of ARTS, Ara-C and DNR on the proliferation of MV4-11 were all dose-dependently (r=0.99, 0.90 and 0.97, respectively). The IC50 of ARTS, Ara-C and DNR on MV4-11 for 48 hours were 0.31 µg/ml, 1.43 µmol/L and 22.47 nmol/L, respectively. At the dose of ARTS 0.3 µg/ml, Ara-C 1.0 µmol/L and DNR 15 nmol/L, the proliferation rate for 48 hours of the tri-combination treatment was significantly lower than that of the bi-combination treatment, while both were significantly lower than that of the individual treatment (all P<0.05). In terms of bi-combination treatment, the cells proliferation rate for 48 hours of the ARTS+Ara-C group was significantly lower than that of the ARTS+DNR group, while both were significantly lower than that of the Ara-C+DNR group (all P<0.05). The cooperativity index (CI) of bi- and tri-combination treatment were all less than 1. After 48 hours of drug action, the cell apoptosis rate of the ARTS+DNR+Ara-C group was significantly higher than that of the Ara-C+DNR group, while both were significantly higher than that of the ARTS+DNR group (all P<0.05). Meanwhile, the was no statistical difference between the cells apoptotic rate of the ARTS+DNR+Ara-C group and the ARTS+Ara-C group (P>0.05). The expression of DR4 and DR5 also showed no difference between control group and drug group. Compared with the DNR+Ara-C group, the expressions of Caspase-3 were significantly down-regulated in both the ARTS+DNR+Ara-C group and the ARTS+Ara-C group (all P<0.05). The down-regulation of Caspase-3 expression was the most significantly in the combination group of three drugs, while the Caspase-9 expressions in different groups showed no apparent change. CONCLUSION: The in vitro study showed that tri-combination of ARTS+Ara-C+DNR and bi-combination of ARTS+Ara-C could inhibit the proliferation and promote apoptosis of MV4-11 cell line. The inhibition effect of these two combinations were significantly superior to that of the traditional Ara-C+DNR treatment. The mechanism underlying this finding may be identified by the down regulation of Caspase-3, while no altered expression was observed of Caspase-9, DR4 and DR5.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Humanos , Citarabina/farmacologia , Daunorrubicina/farmacologia , Caspase 3 , Caspase 9 , Artesunato/farmacologia , Apoptose , Linhagem Celular
4.
Plants (Basel) ; 11(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36145730

RESUMO

Rice, a cold-sensitive crop, is a staple food for more than 50% of the world's population. Low temperature severely compromises the growth of rice and challenges China's food safety. Dongxiang wild rice (DXWR) is the most northerly common wild rice in China and has strong cold tolerance, but the genetic basis of its cold tolerance is still unclear. Here, we report quantitative trait loci (QTLs) analysis for seedling cold tolerance (SCT) using a high-density single nucleotide polymorphism linkage map in the backcross recombinant inbred lines that were derived from a cross of DXWR, and an indica cultivar, GZX49. A total of 10 putative QTLs were identified for SCT under 4 °C cold treatment, each explaining 2.0-6.8% of the phenotypic variation in this population. Furthermore, transcriptome sequencing of DXWR seedlings before and after cold treatment was performed, and 898 and 3413 differentially expressed genes (DEGs) relative to 0 h in cold-tolerant for 4 h and 12 h were identified, respectively. Gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) analysis were performed on these DEGs. Using transcriptome data and genetic linkage analysis, combined with qRT-PCR, sequence comparison, and bioinformatics, LOC_Os08g04840 was putatively identified as a candidate gene for the major effect locus qSCT8. These findings provided insights into the genetic basis of SCT for the improvement of cold stress potential in rice breeding programs.

5.
Curr Issues Mol Biol ; 44(8): 3351-3363, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36005127

RESUMO

The DUF26 domain-containing protein is an extracellular structural protein, which plays an important role in signal transduction. Dongxiang wild rice (Oryza rufipogon Griff.) is the northern-most common wild rice in China. Using domain analysis, 85 DUF26 domain-containing genes were identified in Dongxiang wild rice (DXWR) and further divided into four categories. The DUF26 domain-containing genes were unevenly distributed on chromosomes, and there were 18 pairs of tandem repeats. Gene sequence analysis showed that there were significant differences in the gene structure and motif distribution of the DUF26 domain in different categories. Motifs 3, 8, 9, 13, 14, 16, and 18 were highly conserved in all categories. It was also found that there were eight plasmodesmata localization proteins (PDLPs) with a unique motif 19. Collinearity analysis showed that DXWR had a large number of orthologous genes with wheat, maize, sorghum and zizania, of which 17 DUF26 domain-containing genes were conserved in five gramineous crops. Under the stress of anaerobic germination and seedling submergence treatment, 33 DUF26 domain-containing genes were differentially expressed in varying degrees. Further correlation analysis with the expression of known submergence tolerance genes showed that these DUF26 domain-containing genes may jointly regulate the submergence tolerance process with these known submergence tolerance genes in DXWR.

6.
Plants (Basel) ; 11(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684243

RESUMO

Grain quality is a key determinant of commercial value in rice. Efficiently improving grain quality, without compromising grain yield, is a challenge in rice breeding programs. Here we report on the identification and application of a grain quality gene, Chalk7, which causes a slender shape and decreases grain chalkiness in rice. Three allele-specific markers for Chalk7, and two other grain genes (GS3 and Chalk5) were developed, and used to stack the desirable alleles at these loci. The effects of individual or combined alleles at the loci were evaluated using a set of near-isogenic lines, each containing one to three favorable alleles in a common background of an elite variety. We found that the favorable allele combination of the three loci, which rarely occurs in natural rice germplasm, greatly reduces chalky grains without negatively impacting on grain yield. The data for newly developed allele-specific markers and pre-breeding lines will facilitate the improvement of grain appearance quality in rice.

7.
Front Plant Sci ; 13: 866276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422832

RESUMO

Transmission ratio distortion (TRD) denotes the observed allelic or genotypic frequency deviation from the expected Mendelian segregation ratios in the offspring of a heterozygote. TRD can severely hamper gene flow between and within rice species. Here, we report the fine mapping and characterization of two loci (TRD4.1 and TRD4.2) for TRD using large F2 segregating populations, which are derived from rice chromosome segment substitution lines, each containing a particular genomic segment introduced from the japonica cultivar Nipponbare (NIP) into the indica cultivar Zhenshan (ZS97). The two loci exhibited a preferential transmission of ZS97 alleles in the derived progeny. Reciprocal crossing experiments using near-isogenic lines harboring three different alleles at TRD4.1 suggest that the gene causes male gametic selection. Moreover, the transmission bias of TRD4.2 was diminished in heterozygotes when they carried homozygous TRD4.1 ZS97. This indicates an epistatic interaction between these two loci. TRD4.2 was mapped into a 35-kb region encompassing one candidate gene that is specifically expressed in the reproductive organs in rice. These findings broaden the understanding of the genetic mechanisms of TRD and offer an approach to overcome the barrier of gene flow between the subspecies in rice, thus facilitating rice improvement by introgression breeding.

8.
Rice (N Y) ; 14(1): 97, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34826005

RESUMO

Heterosis denotes the superiority of a hybrid plant over its parents. The use of heterosis has contributed significantly to yield improvement in crops. However, the genetic and molecular bases on heterosis are not fully understood. A large number of heterotic loci were identified for 12 yield-related traits in one parental population of chromosome segment substitution lines (CSSLs) and two test populations, which were interconnected by CSSLs derived from two rice genome-sequenced cultivars, Nipponbare and Zhenshan 97. Seventy-five heterotic loci were identified in both homozygous background of Zhenshan 97 and heterogeneous background of an elite hybrid cultivar Shanyou 63. Among the detected loci, at least 11 were colocalized in the same regions encompassing previously reported heterosis-associated genes. Furthermore, a heterotic locus Ghd8NIP for yield advantage was verified using transgenic experiments. Various allelic interaction at Ghd8 exhibited different heterosis levels in hetero-allelic combinations of five near-isogenic lines that contain a particular allele. The significant overdominance effects from some hetero-allelic combinations were found to improve yield heterosis in hybrid cultivars. Our findings support the role of allelic interaction at heterotic loci in the improvement of yield potential, which will be helpful for dissecting the genetic basis of heterosis and provide an optional strategy for the allele replacement in molecular breeding programs in hybrid rice.

9.
Sci Rep ; 11(1): 189, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420305

RESUMO

Rice is one of the staple crops in the world. Grain size is an important determinant of rice grain yield, but the genetic basis of the grain size remains unclear. Here, we report a set of chromosome segment substitution lines (CSSL) developed in the genetic background of the genome-sequenced indica cultivar Zhenshan 97. Genotyping of the CSSLs by single nucleotide polymorphism array shows that most carry only one or two segments introduced from the genome-sequenced japonica cultivar Nipponbare. Using this population and the high-density markers, a total of 43 quantitative trait loci were identified for seven panicle- and grain-related traits. Among these loci, the novel locus qGL11 for grain length and thousand-grain weight was validated in a CSSL-derived segregating population and finely mapped to a 25-kb region that contains an IAA-amido synthetase gene OsGH3.13, This gene exhibited a significant expression difference in the young panicle between the near-isogenic lines that carry the contrasting Zhenshan 97 and Nipponbare alleles at qGL11. Expression and sequence analyses suggest that this gene is the most likely candidate for qGL11. Furthermore, several OsGH3.13 mutants induced by a CRISPR/Cas9 approach in either japonica or indica exhibit an increased grain length and thousand-grain weight, thus enhancing the final grain yield per plant. These findings provide insights into the genetic basis of grain size for the improvement of yield potential in rice breeding programs.


Assuntos
Cromossomos de Plantas/genética , Genes de Plantas/genética , Oryza/genética , Locos de Características Quantitativas/genética , Alelos , Mapeamento Cromossômico , Genótipo , Fenótipo , Melhoramento Vegetal
10.
Front Plant Sci ; 11: 563548, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193492

RESUMO

Transmission ratio distortion (TRD) refers to a widespread phenomenon in which one allele is transmitted by heterozygotes more frequently to the progeny than the opposite allele. TRD is considered as a mark suggesting the presence of a reproductive barrier. However, the genetic and molecular mechanisms underlying TRD in rice remain largely unknown. In the present study, a population of backcross inbred lines (BILs) derived from the cross of a japonica cultivar Nipponbare (NIP) and an indica variety 9311 was utilized to study the genetic base of TRD. A total of 18 genomic regions were identified for TRD in the BILs. Among them, 12 and 6 regions showed indica (9311) and japonica (NIP) alleles with preferential transmission, respectively. A series of F2 populations were used to confirm the TRD effects, including six genomic regions that were confirmed by chromosome segment substitution line (CSSL)-derived F2 populations from intersubspecific allelic combinations. However, none of the regions was confirmed by the CSSL-derived populations from intrasubspecific allelic combination. Furthermore, significant epistatic interaction was found between TRD1.3 and TRD8.1 suggesting that TRD could positively contribute to breaking intersubspecific reproductive barriers. Our results have laid the foundation for identifying the TRD genes and provide an effective strategy to breakdown TRD for breeding wide-compatible lines, which will be further utilized in the intersubspecific hybrid breeding programs.

11.
Sci Rep ; 10(1): 3726, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111928

RESUMO

Leaf chlorophyll content is an important physiological indicator of plant growth, metabolism and nutritional status, and it is highly correlated with leaf nitrogen content and photosynthesis. In this study, we report the cloning and identification of a xylan glucuronosyltransferase gene (OsGUX1) that affects relative chlorophyll content in rice leaf. Using a set of chromosomal segment substitution lines derived from a cross of wild rice accession ACC10 and indica variety Zhenshan 97 (ZS97), we identified numerous quantitative trait loci for relative chlorophyll content. One major locus of them for relative chlorophyll content was mapped to a 10.3-kb region that contains OsGUX1. The allele OsGUX1AC from ACC10 significantly decreases nitrogen content and chlorophyll content of leaf compared with OsGUX1ZS from ZS97. The overexpression of OsGUX1 reduced chlorophyll content, and the suppression of this gene increased chlorophyll content of rice leaf. OsGUX1 is located in Golgi apparatus, and highly expressed in seedling leaf and the tissues in which primary cell wall synthesis occurring. Our experimental data indicate that OsGUX1 is responsible for addition of glucuronic acid residues onto xylan and participates in accumulation of cellulose and hemicellulose in the cell wall deposition, thus thickening the primary cell wall of mesophyll cells, which might lead to reduced chlorophyll content in rice leaf. These findings provide insights into the association of cell wall components with leaf nitrogen content in rice.


Assuntos
Glucuronosiltransferase/metabolismo , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Xilanos/metabolismo , Alelos , Parede Celular/genética , Parede Celular/metabolismo , Clorofila/metabolismo , Ácido Glucurônico/metabolismo , Glucuronosiltransferase/genética , Hibridização Genética , Nitrogênio/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Locos de Características Quantitativas , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento
12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(4): 1138-1142, 2019 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-31418369

RESUMO

OBJECTIVE: To investigate the clinical efficacy of R-EDOCH protocol in the treatment of newly diagnosed double expression lymphoma. METHODS: The clinical data of 51 patients with newly diagnosed double expression lymphoma treated by R-EDOCH protocol were retrospectively analyzed in the period from May 2012 to October 2017, then overall remission rate (ORR), disease control rate (DCR), progression-free survival (PFS) rate and total survival (OS) rate were evaluated; moreover the patients were grouped according to IPI score and whether accepting hematopoietic stem cell transplantation(HSCT) and the clinical efficacy was compared. RESULTS: The ORR was 96.08% (49/51) and DCR was 100.00% (51/51) in all patients. Six cases out of 51 patients (11.76%) relapsed and progressed during the followed-up. The followed-up showed that 2 year-PFS rate and OS rate were 84.31% (43/51) and 94.12% (48/51) respectively. The ORR, SD rate, 2 year-PFS rate and OS rate in the patients with IPI 0-2 and 3-5 scores were no statistically different(p>0.05); the 2 year-PFS and OS rates between patients in subgroup of IPI 0-2 and 3-5 scores also were not statistically different (p>0.05), no matter whether the patients received auto-HSCT or not. The comparison of 2 year-PFS and OS rates in auto-HSCT patients and non-auto-HSCT patients showed no statistical difference(p>0.05). CONCLUSION: The R-EDOCH protocol in treatment of newly diagnosed double expression lymphoma possess the good overall clinical efficacy, the combination of R-EDOCH with auto-HSCT displays ascending trend of PFS.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Humanos , Linfoma Difuso de Grandes Células B , Estudos Retrospectivos , Transplante Autólogo , Resultado do Tratamento
13.
Plant J ; 94(1): 32-47, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29383786

RESUMO

OsGBPs are a small family of four genes in rice (Oryza sativa L.) that function as transcription factors recognizing the GAGA motif; however, their functions in plant growth and development remain unclear. Here we report the functions of OsGBPs in plant growth and grain development. Knock-down and knock-out of OsGBP1 promoted seedling growth and enhanced grain length, whereas overexpression of OsGBP1 exhibited the opposite effect on seedling growth and grain length, indicating that OsGBP1 repressed grain length and seedling growth. In addition, overexpression of OsGBP1 led to delayed flowering time and suppressed plant height. OsGBP1 could regulate OsLFL1 expression through binding to the (GA)12 element of its promoter. In contrast, OsGBP3 induced grain length and plant height. Grain length and plant height were decreased in OsGBP3RNAi lines and were increased in OsGBP3 overexpression lines. We also found a synergistic effect of these two genes on grain width and plant growth. RNAi of both OsGBP1 and OsGBP3 resulted in severe dwarfism, compared with RNAi of a single gene. These results suggest the presence of functional divergence of OsGBPs in the regulation of grain size and plant growth; these results enrich our understanding of the roles of GAGA-binding transcription factors in the regulatory pathways of plant development.


Assuntos
Oryza/genética , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Grão Comestível/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Técnicas de Silenciamento de Genes , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Plântula/crescimento & desenvolvimento , Fatores de Transcrição/genética , Transcriptoma
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 23(4): 1161-4, 2015 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-26314465

RESUMO

OBJECTIVE: To identify the mutation of ENG and ALK1 genes in a hereditary hemorrhagic telangiectasia pedigree. METHODS: 14 exons of ENG gene and 9 exons of ALK1 gene in 11 menbers of this pedigree 4 generation were amplified by reverse transcription-polymerase chain reaction (RT-PCR), the PCR products were screened by direct sequencing. RESULTS: A nonsense mutation c.447G > A was found in exon 4 of ENG gen of the pedigreee, resulting in change of Trp 149 into Stop, while no gene mutation was found in ALK1 gene. CONCLUSION: The hereditary hemorrhagic telangiectasia in this pedigree is caused by the nonsense mutation c.447G > A in ENG gene.


Assuntos
Telangiectasia Hemorrágica Hereditária , Códon sem Sentido , Éxons , Humanos , Mutação , Linhagem , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...