Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.290
Filtrar
1.
Environ Res ; 262(Pt 1): 119842, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39187148

RESUMO

Brominated flame retardants (BFRs) and their substitutes are prevalent in the environment, especially near industrial point sources. In non-point source pollution areas, it is crucial to investigate the seasonal pollution characteristics to identify the pollution sources. In this study, compositional profiles, seasonal variations, and ecological risks of legacy BFRs and novel BFRs (NBFRs) in the water and sediment from the Tuojiang River located in southwest China were investigated. The results indicated that ΣBFRs ranged from not detected (n.d.) to 42.0 ng/L in water and from 0.13 to 17.6 ng/g in sediment, while ΣNBFRs ranged from n.d. to 15.8 ng/L in water, and from 0.25 to 6.82 ng/g in sediment. A significant seasonal variation was observed in water and sediments with high proportions of legacy BFRs (median percentage of 68.8% and 51.3% in water and sediment) in the dry season, while NBFRs (median percentage of 53.2% and 71.6% in water and sediment) exhibited predominance in the wet season. This highlighted the importance of surface runoff and atmospheric deposition as important sources of NBFRs in aquatic environments. Moreover, there were high ratios of decabromodiphenyl ethane (DBDPE) and BDE-209 (average: 1.38 and 2.76 in dry and wet season) in sediments adjacent to the residual areas, indicating a consumption shift from legacy BFRs to NBFRs in China. It was observed that legacy BFRs showed higher ecological risks compared to NBFRs in both water and sediment environments, with BDE-209 posing low to medium risks to sediment organisms. This study provides better understanding of contamination characteristics and sources of legacy BFRs and NBFRs in non-point source pollution areas.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39098876

RESUMO

RATIONALE: Several lines of evidence indicate that an insertion/deletion (I/D) polymorphism in the angiotensin-converting enzyme gene (ACE) gene may be involved in the pathogenesis of schizophrenia and cognitive impairment. However, the relationship between ACE I/D polymorphism and cognitive impairment in patients with schizophrenia remains unclear. OBJECTIVES: The aim of this study was to examine whether ACE gene I/D polymorphism contributed to cognitive impairment in Chinese patients with schizophrenia, and whether the association between clinical symptoms and cognitive impairment depended on different ACE genotypes. METHODS: The ACE I/D polymorphism was genotyped in 928 schizophrenia patients and 325 healthy controls using a case-control design. The severity of psychopathological symptoms was assessed using the Positive and Negative Syndrome Scale (PANSS). Cognitive functioning was assessed by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). RESULTS: There were significant differences in genotype and allele frequencies of the ACE I/D polymorphism between patients and healthy controls (both P < 0.01). After controlling for demographic characteristics, patients who are homozygous carriers of D and I performed worse on the RBANS attention index than heterozygous carriers (P = 0.009). In addition, attention index score was negatively correlated with PANSS negative symptom score in patients of all genotypes (all P < 0.05), and positively correlated with positive symptom score only in the I/I genotype (P = 0.005). CONCLUSIONS: These findings suggest that ACE I/D gene variants play a role in susceptibility to schizophrenia, specific cognitive impairment and the association between clinical symptoms and cognitive impairment in schizophrenia patients.

3.
BMC Genomics ; 25(1): 773, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118028

RESUMO

BACKGROUND: Fritillaria ussuriensis is an endangered medicinal plant known for its notable therapeutic properties. Unfortunately, its population has drastically declined due to the destruction of forest habitats. Thus, effectively protecting F. ussuriensis from extinction poses a significant challenge. A profound understanding of its genetic foundation is crucial. To date, research on the complete mitochondrial genome of F. ussuriensis has not yet been reported. RESULTS: The complete mitochondrial genome of F. ussuriensis was sequenced and assembled by integrating PacBio and Illumina sequencing technologies, revealing 13 circular chromosomes totaling 737,569 bp with an average GC content of 45.41%. A total of 55 genes were annotated in this mitogenome, including 2 rRNA genes, 12 tRNA genes, and 41 PCGs. The mitochondrial genome of F. ussuriensis contained 192 SSRs and 4,027 dispersed repeats. In the PCGs of F. ussuriensis mitogenome, 90.00% of the RSCU values exceeding 1 exhibited a preference for A-ended or U-ended codons. In addition, 505 RNA editing sites were predicted across these PCGs. Selective pressure analysis suggested negative selection on most PCGs to preserve mitochondrial functionality, as the notable exception of the gene nad3 showed positive selection. Comparison between the mitochondrial and chloroplast genomes of F. ussuriensis revealed 20 homologous fragments totaling 8,954 bp. Nucleotide diversity analysis revealed the variation among genes, and gene atp9 was the most notable. Despite the conservation of GC content, mitogenome sizes varied significantly among six closely related species, and colinear analysis confirmed the lack of conservation in their genomic structures. Phylogenetic analysis indicated a close relationship between F. ussuriensis and Lilium tsingtauense. CONCLUSIONS: In this study, we sequenced and annotated the mitogenome of F. ussuriensis and compared it with the mitogenomes of other closely related species. In addition to genomic features and evolutionary position, this study also provides valuable genomic resources to further understand and utilize this medicinal plant.


Assuntos
Espécies em Perigo de Extinção , Fritillaria , Genoma Mitocondrial , Filogenia , Plantas Medicinais , Edição de RNA , Fritillaria/genética , Plantas Medicinais/genética , Composição de Bases , RNA de Transferência/genética , Anotação de Sequência Molecular
4.
Ann Med ; 56(1): 2390169, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39129458

RESUMO

OBJECTIVE: The association of appendicular skeletal muscle mass (ASM), grip strength and fat-to-muscle ratio (FMR) and the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) are not well known. MATERIALS AND METHODS: This study included participants older than 40 years who underwent bioelectrical impedance assessment in Prevalence of Metabolic Diseases and Risk Factors in Shunde (SPEED-Shunde). We measured grip strength with an electronic grip strength metre. ASM and grip strength were adjusted by dividing body mass index (BMI). FMR was calculated as total fat mass to total muscle mass. Liver steatosis and liver fibrosis were evaluated by vibration-controlled transient elastography. Multifactorial logistic regression was used to analyse the relationship between ASM, grip strength, FMR, and MASLD or MASLD-associated liver fibrosis. We performed subgroup analyses according to sex, age and BMI. Interaction tests and linear trend tests were also conducted. RESULTS: This study included a total of 3277 participants. FMR was positively associated with MASLD (OR: 1.89, 95% CI: 1.66-2.15) and MASLD-associated liver fibrosis (OR: 1.70, 95% CI: 1.22-2.37). While ASM/BMI (OR: 0.59, 95% CI: 0.52-0.67) or grip strength/BMI (OR: 0.72, 95% CI: 0.66-0.78) were negatively associated with MASLD. Interactions were observed between ASM/BMI and age, grip strength and sex in MASLD, as well as FMR and MASLD-associated liver fibrosis. CONCLUSION: In a middle-to-elderly aged population, FMR was positively associated with the risk of MASLD and MASLD-associated liver fibrosis, and muscle mass and grip strength were negatively associated with MASLD, rather than MASLD-associated liver fibrosis.


Assuntos
Índice de Massa Corporal , Força da Mão , Músculo Esquelético , Humanos , Masculino , Força da Mão/fisiologia , Feminino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Músculo Esquelético/diagnóstico por imagem , Idoso , Fígado Gorduroso/fisiopatologia , Fígado Gorduroso/epidemiologia , Fígado Gorduroso/complicações , Fatores de Risco , Cirrose Hepática/fisiopatologia , Cirrose Hepática/complicações , Cirrose Hepática/epidemiologia , Estudos Transversais , Técnicas de Imagem por Elasticidade , Adulto , Impedância Elétrica , Tecido Adiposo/diagnóstico por imagem , Composição Corporal
5.
Front Psychiatry ; 15: 1424103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39176231

RESUMO

Background: Suicide attempts and anxiety are common commodities in patients with major depressive disorder (MDD), and suicide attempts are often associated with anxiety symptoms. Studies have found gender differences in several aspects of MDD; however, gender differences in suicide attempts in young first-episode and drug-naive (FEDN) MDD patients with anxiety remain unknown. This study aimed to investigate potential gender differences in the prevalence of suicide attempts and associated risk factors among young FEDN MDD patients with anxiety in a Chinese Han population. Methods: A cross-sectional study was conducted on 1289 young patients with FEDN MDD. Demographics, clinical characteristics, and biochemical parameters of patients were collected. Results: Suicide attempters accounted for 23.80% and 26.12% of male and female FEDN MDD patients with anxiety, respectively, with no significant gender differences. Binary logistic regression analyses showed that anxiety, clinical global impression severity, and thyroid peroxidase antibody significantly predicted suicide attempts in both male and female FEDN MDD patients with anxiety, while body mass index significantly predicted suicide attempts only in males, and psychotic symptoms predicted suicide attempts only in females. Conclusion: The present study represents the first large-scale investigation of gender differences in the prevalence of suicide attempts and related risk factors among young FEND MDD patients with anxiety in the Chinese Han population. The results indicate that risk factors associated with suicide attempts vary by gender among young FEND MDD patients with anxiety, although a comparable rate of suicide attempts was observed in both female and male patients.

6.
Int J Biol Macromol ; 278(Pt 3): 135013, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39181361

RESUMO

A novel rare earth complex, Eu(IAA)2(phen)2 (EuIP), was synthesized by solution-based synthesis method. Then, EuIP and polylactic acid (PLA) were melt-blended at 190 °C to obtain a multifunctional PLA/EuIP composite. The incorporation of EuIP provided PLA/EuIP composites with good light conversion ability. Under UV irradiation, PLA/EuIP composites converted the absorbed UV light into red light. Moreover, the PLA/1.0EuIP composite exhibited excellent light transmittance of 88 % in the visible region and showed strong red emission under UV light. After UV irradiation for 96 h, the molecular weights and mechanical properties of neat PLA decreased dramatically. Interestingly, the molecular weights and mechanical properties of PLA/EuIP composites did not deteriorate after 96 h of UV irradiation. The reason was that EuIP could absorb UV light and utilize the absorbed energy to emit red fluorescence. Furthermore, PLA/EuIP composites showed good antibacterial activities against E. coli and S. aureus. In addition, in vitro cell experiments showed that PLA/EuIP composites was suitable for the growth of murine breast cancer (4 T1) cells. Besides, enzymatic degradation testing also proved that PLA/EuIP composites had good biodegradability. This work provides an ingenious design strategy for the preparation of PLA/EuIP composites possessing light conversion ability, UV resistance, and antibacterial properties.

7.
Plant J ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180235

RESUMO

Hypersensitive response-programmed cell death (HR-PCD) regulated by Ca2+ signal is considered the major regulator of resistance against Puccinia triticina (Pt.) infection in wheat. In this study, the bread wheat variety Thatcher and its near-isogenic line with the leaf rust resistance locus Lr26 were infected with the Pt. race 260 to obtain the compatible and incompatible combinations, respectively. The expression of translationally controlled tumor protein (TaTCTP) was upregulated upon infection with Pt., through a Ca2+-dependent mechanism in the incompatible combination. The knockdown of TaTCTP markedly increased the area of dying cell and the number of Pt. haustorial mother cells (HMCs) at the infection sites, whereas plants overexpressing the gene exhibited enhanced resistance. The interaction between TaTCTP and calcineurin B-like protein-interacting protein kinase 23 (TaCIPK23) was also investigated, and the interaction was found occurred in the endoplasmic reticulum. TaCIPK23 phosphorylated TaTCTP in vitro. The expression of a phospho-mimic TaTCTP mutant in Nicotiana benthamiana promoted HR-like cell death. Silencing TaCIPK23 or TaCIPK23/TaTCTP co-silencing resulted in the same results as silencing TaTCTP. This suggested that TaTCTP is a novel phosphorylation target of TaCIPK23, and both participate in the resistance of wheat to Pt. in the same pathway.

8.
Anal Chem ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39195842

RESUMO

Developing a convenient method to efficiently determine the size of nanoplastics in the environment is urgent in terms of ecological or human health protection. In this work, a novel strategy for discriminating the size of polystyrene (PS)-based nanoplastics was reported via regulating the radiative transition efficiency of NH2-UIO-66 (NU) with benzoic acid (BA) as the auxiliary ligand. The elaborately doped BA capped the defect sites and triggered nonradiative transition efficiency of NU. As a result, the formed composite (denoted as BA-NU) was more sensitive to interaction among neighboring NU and nanoplastics. The interaction between particles limited the rotation and vibration of the benzene ring within the BA-NU molecule, thus increasing the BA-NU fluorescence. The sensitivity of BA-NU on nanoplastics was well controlled by manipulating the doping contents of BA, leading to precisely tunable physicochemical properties for this structure. Deriving from the exquisitely designed nanostructures, the composite of BA-NU was successfully used to discriminate different size PS as an ultrasensitive turn-on probe. This work highlights the possibility of boosting the detection performance by regulating the main structure with guest molecules at the molecular level.

9.
J Sport Health Sci ; : 100968, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39187065

RESUMO

BACKGROUND: Resistance exercise leads to improved muscle function and metabolic homeostasis. Yet how circadian rhythm impacts exercise outcomes and its molecular transduction remains elusive. METHODS: Human volunteers were subjected to 4 weeks of resistance training protocols at different times of day to assess training outcomes and their associations with myokine irisin. Based on rhythmicity of Fibronectin type III domain containing 5 (FNDC5/irisin), we trained wild type and FNDC5 knockout mice at late active phase (high FNDC5/irisin level) or late rest phase (low FNDC5/irisin level) to analyze exercise benefits on muscle function and metabolic homeostasis. Molecular analysis was performed to understand the regulatory mechanisms of FNDC5 rhythmicity and downstream signaling transduction in skeletal muscle. RESULTS: In this study, we showed that regular resistance exercises performed at different times of day resulted in distinct training outcomes in humans, including exercise benefits and altered plasma metabolomics. We found that muscle FNDC5/irisin levels exhibit rhythmicity. Consistent with human data, compared to late rest phase (low irisin level), mice trained chronically at late active phase (high irisin level) gained more muscle capacity along with improved metabolic fitness and metabolomics/lipidomics profiles under a high-fat diet, whereas these differences were lost in FNDC5 knockout mice. Mechanistically, Basic helix-loop-helix ARNT like 1 (BMAL1) and Peroxisome proliferative activated receptor, gamma, coactivator 1 alpha 4 (PGC1α4) induce FNDC5/irisin transcription and rhythmicity, and the signaling is transduced via αV integrin in muscle. CONCLUSION: Together, our results offered novel insights that exercise performed at distinct times of day determines training outcomes and metabolic benefits through the rhythmic regulation of the BMAL1/PGC1α4-FNDC5/irisin axis.

10.
Plant Physiol ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189546

RESUMO

Leaf rust, caused by Puccinia triticina Erikss. (Pt), is a serious disease threatening wheat (Triticum aestivum L.) production worldwide. Hydrogen peroxide (H2O2) triggered by Pt infection in resistant wheat cultivars cause oxidative damage directly to biomolecules or is activated by calcium signaling and mediates the hypersensitive response. Calmodulin-binding transcriptional activator 4 (TaCAMTA4) has been reported to negatively regulate wheat resistance to Pt. In this study, we found that TaCAMTA4 was induced by Pt race 165 in its compatible host harboring the Pt resistant locus Lr26, TcLr26, and silencing of TaCAMTA4 increased local H2O2 accumulation and Pt resistance. Subcellular localization and autoactivation tests revealed that TaCAMTA4 is a nucleus-localized transcriptional activator. Furthermore, four DNA motifs recognized by TaCAMTA4 were identified by transcription factor-centered Y1H. Through analyzing the transcriptome database, four gene clusters were identified, each containing a different DNA motif on each promoter. Among them, the expression of catalase 1 (TaCAT1) with motif-1 was highly induced in the compatible interaction and was decreased when TaCAMTA4 was silenced. The results of EMSA, ChIP-qPCR, and RT-qPCR further showed that TaCAMTA4 directly bound motif-1 in the TaCAT1 promoter. Furthermore, silencing of TaCAT1 resulted in enhanced resistance to Pt and increased local H2O2 accumulation in wheat, which is consistent with that of TaCAMTA4. Since CAMTAs are Ca2+ sensors and catalases catalyze the decomposition of H2O2, we hypothesize that Ca2+ regulates the plant immune networks that are controlled by H2O2 and implicate a potential mechanism for Pt to suppress resistance by inducing the expression of the TaCAMTA4-TaCAT1 module, which consequently enhances H2O2 scavenging and attenuates H2O2-dependent resistance.

11.
Int Immunopharmacol ; 139: 112766, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39067403

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and incurable lung disease characterized by unknown etiology. This study employs robust ranking aggregation to identify consistent differential genes across multiple datasets, aiming to enhance prognostic evaluation and facilitate the development of more effective immunotherapy strategies for IPF. Using the GSE10667, GSE110147, and GSE24206 datasets, the analysis identifies 92 robust differentially expressed genes (DEGs), including SPP1, IGF1, ASPN, and KLHL13, highlighted as potential biomarkers through machine learning and experimental validation. Additionally, significant differences in immune cell types between IPF samples and controls, such as Plasma cells, Macrophages M0, Mast cells resting, T cells CD8, and NK cells resting, inform the construction of diagnostic and survival prediction models, demonstrating good applicability. These findings provide insights into IPF pathophysiology and suggest potential therapeutic targets.


Assuntos
Biomarcadores , Fibrose Pulmonar Idiopática , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/imunologia , Humanos , Animais , Aprendizado de Máquina , Camundongos , Perfilação da Expressão Gênica , Prognóstico , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética , Osteopontina/genética , Osteopontina/metabolismo , Pulmão/patologia , Pulmão/imunologia , Modelos Animais de Doenças
12.
J Agric Food Chem ; 72(30): 16941-16954, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39024128

RESUMO

Anthocyanin (ACN)-derived pigmentation in the red Zanthoxylum bungeanum peel is an essential commercial trait. Therefore, exploring the metabolic regulatory networks involved in peel ACN levels in this species is crucial for improving its quality. However, its underlying transcriptional regulatory mechanisms are still unknown. This transcriptomic and bioinformatics study not only discovered a new TF (ZbMYB111) as a potential regulator for ACN biosynthesis in Z. bungeanum peel, but also deciphered the underlying molecular mechanisms of ACN biosynthesis. Overexpression of ZbMYB111 and flavonoid 3-O-glucosyltransferase (ZbUFGT) induced ACN accumulation in both Z. bungeanum peels and callus along with Arabidopsis thaliana and tobacco flowers, whereas their silencing impaired ACN biosynthesis. Therefore, the dual-luciferase reporter, yeast-one-hybrid, and electrophoretic mobility shift assays showed that ZbMYB111 directly interacted with the ZbUFGT promoter to activate its expression. This diverted the secondary metabolism toward the ACN pathway, thereby promoting ACN accumulation.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Zanthoxylum , Antocianinas/biossíntese , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zanthoxylum/metabolismo , Zanthoxylum/genética , Zanthoxylum/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Regiões Promotoras Genéticas , Arabidopsis/genética , Arabidopsis/metabolismo
13.
J Agric Food Chem ; 72(32): 18271-18282, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39074379

RESUMO

Flammulina velutipes (enokitake) is widely recognized for its nutritional and medicinal properties. Understanding the biochemical processes, such as lipid metabolism during fruiting body formation, is essential for enhancing mushroom cultivation and utilization. This study aimed at elucidating the dynamic lipidomic changes during seven growth stages of F. velutipes using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Our results revealed significant increases in ceramides along with the growth and a sharp decline in phosphatidylinositols from mycelial to primordial stages. Fatty acid esters of hydroxy fatty acids, recently discovered for their bioactivities, showed high intensities in the mycelial and primordial stages but decreased rapidly thereafter. These findings provide profound insights into the lipid profiles associated with mushroom morphology and development. This lipidomics study establishes a foundational understanding for future research in agricultural and food chemistry applications, potentially improving industrial production and quality control of F. velutipes.


Assuntos
Flammulina , Carpóforos , Lipidômica , Espectrometria de Massas , Flammulina/química , Flammulina/crescimento & desenvolvimento , Flammulina/metabolismo , Cromatografia Líquida de Alta Pressão , Carpóforos/química , Carpóforos/crescimento & desenvolvimento , Carpóforos/metabolismo , Lipidômica/métodos , Espectrometria de Massas/métodos , Lipídeos/química , Metabolismo dos Lipídeos
14.
Anal Bioanal Chem ; 416(21): 4717-4726, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38970677

RESUMO

As biomarkers of cancer, the accurate and sensitive detection of microRNAs is of great significance. Therefore, we proposed a surface-enhanced Raman scattering (SERS)/electrochemical (EC) dual-mode nanosensor for sensitively detecting miRNA-141. The nanosensor uses Au@Ag nanowires as a novel SERS/EC sensing platform, which has the advantages of good biocompatibility, fast response, and high sensitivity. The dual-mode nanosensor can not only effectively overcome the problem of insufficient reliability of single signal, but also realize the amplification and stable output of the detection signal, to ensure the reliability and repeatability of miRNA detection. With this sensing strategy, the target miRNA-141 can be detected over a wide linear range (100 fM to 50 nM) (LOD of 18.4 fM for SERS and 16.0 fM for electrochemical methods). In addition, the process shows good selectivity and can distinguish miRNA-141 from other interfering miRNAs. The actual analysis of human serum samples also proves that our strategy has good reliability, repeatability, and has broad application prospects in the field of analysis and detection.


Assuntos
Técnicas Eletroquímicas , Ouro , Limite de Detecção , MicroRNAs , Nanofios , Prata , Análise Espectral Raman , MicroRNAs/análise , MicroRNAs/sangue , Nanofios/química , Ouro/química , Análise Espectral Raman/métodos , Humanos , Prata/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química
15.
Biomater Sci ; 12(17): 4452-4470, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39052032

RESUMO

The aim of this study was to develop a semi-interpenetrating network (IPN) hydrogel system suitable for the oral environment, capable of controlled release of DNase-I and oridonin (ORI), to exert antimicrobial, anti-inflammatory, and reparative effects on chemoradiotherapy-induced oral mucositis (OM). This IPN was based on the combination of ε-polylysine (PLL) and hetastarch (HES), loaded with DNase-I and ORI (ORI/DNase-I/IPN) for OM treatment. In vitro studies were conducted to evaluate degradation, adhesion, release analysis, and bioactivity including cell proliferation and wound healing assays using epidermal keratinocyte and fibroblast cell lines. Furthermore, the therapeutic effects of ORI/DNase-I/IPN were investigated in vivo using Sprague-Dawley (SD) rats with chemoradiotherapy-induced OM. The results demonstrated that the IPN exhibited excellent adhesion to wet mucous membranes, and the two drugs co-encapsulated in the hydrogel were released in a controlled manner, exerting inhibitory effects on bacteria and degrading NETs in wound tissues. The in vivo wound repair effect, microbiological assays, H&E and Masson staining supported the non-toxicity of ORI/DNase-I/IPN, as well as its ability to accelerate the healing of oral ulcers and reduce inflammation. Overall, ORI/DNase-I/IPN demonstrated a therapeutic effect on OM in rats by significantly accelerating the healing process. These findings provide new insights into possible therapies for OM.


Assuntos
Quimiorradioterapia , Desoxirribonuclease I , Diterpenos do Tipo Caurano , Hidrogéis , Ratos Sprague-Dawley , Estomatite , Cicatrização , Animais , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/farmacologia , Diterpenos do Tipo Caurano/administração & dosagem , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/administração & dosagem , Cicatrização/efeitos dos fármacos , Humanos , Desoxirribonuclease I/farmacologia , Desoxirribonuclease I/administração & dosagem , Ratos , Estomatite/tratamento farmacológico , Estomatite/induzido quimicamente , Estomatite/terapia , Masculino , Polilisina/química , Polilisina/farmacologia , Proliferação de Células/efeitos dos fármacos
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167338, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38986818

RESUMO

BACKGROUND: We have previously identified auto-antibody (Ab) to collapsin response mediator protein 2 (CRMP2) in patients with encephalitis. The present study aims to evaluate the pathogenic effects of anti-CRMP2 Ab. METHODS: Recombinant CRMP2 protein was injected subcutaneously into mice to establish an active immune mouse model with anti-CRMP2 Ab. Behavioral assessments, histopathological staining, and electrophysiological testing were performed to identify any pathogenic changes. RESULTS: The mice exhibited signs of impaired motor coordination four weeks post-immunization of CRMP2 protein. Moreover, CRMP2 immunized mice for eight weeks showed anxiety-like behaviors indicating by tests of open field and the elevated plus maze. After incubating the CA1 region of hippocampal brain section with the sera from CRMP2 immunized mice, the whole-cell path-clamp recordings showed increased excitability of pyramidal neurons. However, no obvious inflammation and infiltration of immune cells were observed by histopathological analysis. Western blot showed that the phosphorylation levels of CRMP2-Thr514 and -Ser522 were not affected. CONCLUSION: In an active immunization model with CRMP2 protein, impaired coordination and anxiety-like behaviors were observed. Also, anti-CRMP2 Abs containing sera heightened the excitability of hippocampal pyramidal neurons in vitro, which imply the pathogenic effects of anti-CRMP2 Ab.


Assuntos
Ansiedade , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas do Tecido Nervoso , Células Piramidais , Animais , Células Piramidais/patologia , Células Piramidais/metabolismo , Células Piramidais/imunologia , Ansiedade/imunologia , Ansiedade/patologia , Camundongos , Proteínas do Tecido Nervoso/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Masculino , Autoanticorpos/imunologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Fosforilação , Hipocampo/patologia , Hipocampo/imunologia , Hipocampo/metabolismo
17.
Hypertens Res ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969805

RESUMO

The renin-angiotensin system (RAS) and the sympathetic nervous system (SNS) are two major blood pressure-regulating systems. The link between the renal and cerebral RAS axes was provided by reflex activation of renal afferents and efferent sympathetic nerves. There is a self-sustaining enhancement of the brain and the intrarenal RAS. In this study, prenatal exposure to lipopolysaccharide (LPS) led to increased RAS activity in the paraventricular nucleus (PVN) and overactivation of sympathetic outflow, accompanied by increased production of reactive oxygen species (ROS) and disturbances between inhibitory and excitatory neurons in PVN. The AT1 receptor blocker losartan and α2 adrenergic receptor agonist clonidine in the PVN significantly decreased renal sympathetic nerve activity (RSNA) and synchronously reduced systolic blood pressure. Prenatal LPS stimulation caused H3 acetylation at H3K9 and H3K14 in the PVN, which suggested that epigenetic changes are involved in transmitting the prenatal adverse stimulative information to the next generation. Additionally, melatonin treatment during pregnancy reduced RAS activity and ROS levels in the PVN; balanced the activity of inhibitory and excitatory neurons in the PVN; increased urine sodium secretion; reduced RSNA and blood pressure. In conclusion, prenatal LPS leads to increased RAS expression within the PVN and overactivation of the sympathetic outflow, thereby contributing to hypertension in offspring rats. Melatonin is expected to be a promising agent for preventing prenatal LPS exposure-induced hypertension.

19.
iScience ; 27(7): 110221, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39021805

RESUMO

Acute myeloid leukemia (AML) is a clonal malignancy originating from leukemia stem cells, characterized by a poor prognosis, underscoring the necessity for novel therapeutic targets and treatment methodologies. This study focuses on Ras homolog family member F, filopodia associated (RHOF), a Rho guanosine triphosphatase (GTPase) family member. We found that RHOF is overexpressed in AML, correlating with an adverse prognosis. Our gain- and loss-of-function experiments revealed that RHOF overexpression enhances proliferation and impedes apoptosis in AML cells in vitro. Conversely, genetic suppression of RHOF markedly reduced the leukemia burden in a human AML xenograft mouse model. Furthermore, we investigated the synergistic effect of RHOF downregulation and chemotherapy, demonstrating significant therapeutic efficacy in vivo. Mechanistically, RHOF activates the AKT/ß-catenin signaling pathway, thereby accelerating the progression of AML. Our findings elucidate the pivotal role of RHOF in AML pathogenesis and propose RHOF inhibition as a promising therapeutic approach for AML management.

20.
Front Pediatr ; 12: 1415941, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044731

RESUMO

This study examines research perspective in the clinical diagnosis, treatment, and prevention of cardiovascular complications in Kawasaki Disease (KD). Starting with an overview of the disease, it introduces KD's clinical manifestations, etiology, epidemiological features, and its impact on the cardiovascular system. Subsequently, the study discusses in detail the diagnostic methods, pathological mechanisms, and treatment strategies for KD, including foundational and emerging approaches such as high-dose intravenous immunoglobulin and aspirin therapy, biologic therapy, and corticosteroid pulse therapy. Additionally, it outlines strategies for preventing cardiovascular complications, including early risk assessment and long-term management. The study also explores the intersection of the COVID-19 pandemic with an increase in KD-like symptoms, emphasizing the need for further studies on the association between SARS-CoV-2 and KD. Lastly, it explores future research directions to enhance understanding of KD and improve patient outcomes and quality of life. This study provides valuable insights into the comprehensive treatment and management of KD and highlights avenues for future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA