Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 358: 124522, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986759

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a type of organic pollution that can accumulate in crops and hazard human health. This study used phenanthrene (PHE) as a model PAH and employed hydroponic experiments to illustrate the role of indole-3-acetic acid (IAA) in the regulation of PHE accumulation in wheat roots. At optimal concentrations, wheat roots treated with PHE + IAA showed a 46.9% increase in PHE concentration, whereas treatment with PHE + P-chlorophenoxyisobutyric acid resulted in a 38.77% reduction. Transcriptome analysis identified TaSAUR80-5A as the crucial gene for IAA-enhancing PHE uptake. IAA increases plasma membrane H+-ATPase activity, promoting active transport of PHE via the PHE/H+ cotransport mechanism. These results provide not only the theoretical basis necessary to better understand the function of IAA in PAHs uptake and transport by staple crops, but also a strategy for controlling PAHs accumulation in staple crops and enhancing phytoremediation of PAH-contaminated environments.


Assuntos
Biodegradação Ambiental , Ácidos Indolacéticos , Fenantrenos , Raízes de Plantas , Poluentes do Solo , Triticum , Fenantrenos/metabolismo , Triticum/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Transporte Biológico , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
Plant Physiol Biochem ; 206: 108275, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103340

RESUMO

The study focuses on the uptake, accumulation, and translocation of polycyclic aromatic hydrocarbons (PAHs) in cereals, specifically exploring the role of peroxidase (UniProt accession: A0A3B5XXD0, abbreviation: PX1) and unidentified protein (UniProt accession: A0A3B6LUC6, abbreviation: UP1) in phenanthrene solubilization within wheat xylem sap. This research aims to clarify the interactions between these proteins and phenanthrene. Employing both in vitro and in vivo analyses, we evaluated the solubilization capabilities of recombinant transport proteins for phenanthrene and examined the relationship between protein expression and phenanthrene concentration. UP1 displayed greater transport efficiency, while PX1 excelled at lower concentrations. Elevated PX1 levels contributed to phenanthrene degradation, marginally diminishing its transport. Spectral analyses and molecular dynamics simulations validated the formation of stable protein-phenanthrene complexes. The study offers crucial insights into PAH-related health risks in crops by elucidating the mechanisms of PAH accumulation facilitated by transport proteins.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Proteínas de Transporte/metabolismo , Triticum/metabolismo , Raízes de Plantas/metabolismo , Fenantrenos/análise , Fenantrenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
3.
Sci Total Environ ; 882: 163560, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080310

RESUMO

Nanoplastics are an emerging environmental pollutant, having a potential risk to the terrestrial ecosystem. In the natural environment, almost all the micro-or nano-plastics will be aged by many factors and their characterizations of the surface will be modified. However, the toxicity and mechanism of the modified polystyrene nanoparticles (PS-NPs) to plant cells are not clear. In the study, the amino- and carboxyl-modified PS-NPs with different sizes (20 and 200 nm) were selected as the typical representatives to investigate their effects on protoplast cell viability, reactive oxygen species (ROS) production in the cell and the leakage of cell-inclusion and apoptosis. The results indicated that the 20 nm amino-modified PS-NPs (PS-20A) could significantly damage the structure of the cell, especially the cell membrane, chloroplast and mitochondrion. After being modified by amino group, smaller size nanoplastics had the potential to cause more severe damage. In addition, compared with carboxyl-modified PS-NPs, the amino-modified PS-NPs induced more ROS production and caused higher membrane permeability/lactate dehydrogenase (LDH) leakage. Apoptosis assay indicated that the proportion of viable cells in the PS-20A treatment decreased significantly, and the proportion of necrotic cells increased by four times. This study provides new insights into the toxicity and damage mechanism of PS-NPs to terrestrial vascular plants at the cellular level, and guides people to pay attention to the quality and safety of agricultural products caused by nanoplastics.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Humanos , Idoso , Poliestirenos/toxicidade , Poliestirenos/química , Triticum , Microplásticos/toxicidade , Ecossistema , Espécies Reativas de Oxigênio , Protoplastos , Poluentes Químicos da Água/toxicidade , Nanopartículas/toxicidade , Nanopartículas/química
4.
J Hazard Mater ; 436: 129176, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739711

RESUMO

The wide existence of microplastics (MPs) in the terrestrial systems is proved by -many studies, and their presence could potentially change the soil chem-physical properties and processes. Various types of microplastics may have different behaviors, inducing distinct effects on the soil ecosystems. However, the knowledge of microplastic impacts on rhizosphere soil bacterial community structure is limited. In our study, three types of microplastics, i.e., polyethylene (PE), polyvinylchloride (PVC) and polystyrene (PS), with the same particle size (200 µm) and concentration (2%) were used to investigate their influences on the rhizosphere soil bacterial communities. Results revealed that the alpha diversities (richness, evenness and diversity) of microbiota in the rhizosphere soil were variously decreased by the microplastics, especially the PE MPs. The relative abundance of some various phyla and genera related to pollution degradation was miscellaneously increased, indicating that the MPs with different characterizations may have miscellaneous biodegradation pathways. Moreover, the PICRUSt2 analysis demonstrated that PS decreased most functional category levels and led to a decrease of bacterial genus number, however, PE and PVC improved metabolic pathways and xenobiotics biodegradation and metabolism. Our findings offer important knowledge of how the microplastics with different characterizations influence rhizosphere soil bacterial communities and their related function.


Assuntos
Microbiota , Poluentes do Solo , Bactérias/genética , Microplásticos/toxicidade , Plásticos , Polietileno , Poliestirenos/análise , Cloreto de Polivinila , Rizosfera , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Triticum
5.
Sci Total Environ ; 838(Pt 1): 155919, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35577096

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) have the potential to cause cancer, teratogenicity, and mutagenesis in humans. Long-term plant safe production relies on how PAHs are transported and coordinated across organs. However, the acropetal transfer mechanism of PAHs in staple crop stems, particularly in xylem, a critical path, is unknown. Herein, we first confirmed the presence of specific interaction between the proteins and phenanthrene by employing the magnetic phenanthrene-bound bead immunoassay and label free liquid chromatograph mass spectrometer (LC-MS/MS), suggesting that peroxidase (uniprot accession: A0A3B5XXD0) and unidentified proteins (uniprot accession: A0A3B6LUC6) may function as the carriers to load and acropetally translocate phenanthrene (a model PAH) in wheat xylem. This specified binding of protein-phenanthrene may form through hydrophobic interactions in the conservative binding region, as revealed by protein structural investigations and molecular docking. To further investigate the role of these proteins in phenanthrene solubilization, phenanthrene exposure was conducted: a substantial quantity of peroxidase was produced; an unusually high expression of uncharacterized proteins was observed, indicating their positive effects in the acropetal transfer of phenanthrene in wheat xylem. These data confirmed that the two proteins are crucial in the solubilization of phenanthrene in wheat xylem sap. Our findings provide fresh light on the molecular mechanism of PAH loading in plant xylem and techniques for ensuring the security of staple crops and improving the efficacy of phytoremediation in a PAH-contaminated environment.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Cromatografia Líquida , Humanos , Simulação de Acoplamento Molecular , Peroxidases/metabolismo , Fenantrenos/metabolismo , Raízes de Plantas/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Espectrometria de Massas em Tandem , Triticum/metabolismo , Xilema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA