Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 44(8): 4468-4478, 2023 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-37694641

RESUMO

The passivation effect of Fe3O4/mulberry pole biochar (Fe-MBC) prepared at different carbonization temperatures on soil available arsenic content was studied through soil culture experiments, and Fe-MBC-800 (prepared by carbonization at 800℃) with good passivation effect was selected and characterized. The effects of 1%-7% (mass fraction of biochar to soil) Fe-MBC-800, MBC-800, and Fe3O4 on soil pH value, soil electrical conductivity, soil arsenic form, rice biomass, and total arsenic (As) content in rice were studied using a pot experiment. The results showed that:①Fe-MBC-800 successfully loaded Fe3O4, and its main functional groups were C=O double bond, O-H bond, C-O bond, and Fe-O bond. The specific surface areas of Fe-MBC-800, MBC-800, and Fe3O4 were 209.659 m2·g-1, 517.714 m2·g-1, and 68.025 m2·g-1, respectively. ②The addition of Fe-MBC-800 could increase the soil pH value, decrease the soil EC value, increase the content of residual arsenic in soil, and reduce the content of water-soluble arsenic and available arsenic in the soil. Under the treatment using 7% Fe-MBC-800 (ω) amendments, the content of water-soluble arsenic and available arsenic in the soil decreased by 81.6% and 56.33%, respectively. ③When the addition ratio of Fe-MBC-800 in the soil was 5%-7%, it could promote the growth of rice plants, increase rice biomass, and reduce the bioaccumulation of arsenic by between 62.5% and 68.75%.


Assuntos
Arsênio , Carvão Vegetal , Compostos Férricos , Oryza , Solo , Morus , Oryza/química , Arsênio/análise , Caules de Planta , Carvão Vegetal/química , Compostos Férricos/química , Solo/química
2.
Huan Jing Ke Xue ; 44(6): 3278-3287, 2023 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-37309946

RESUMO

In this study, coconut shell biochar modified by KMnO4 (MCBC) was used as the adsorbent, and its removal performance and mechanism for Cd(Ⅱ) and Ni(Ⅱ) were discussed. When the initial pH and MCBC dosage were separately 5 and 3.0 g·L-1, respectively, the removal efficiencies of Cd(Ⅱ) and Ni(Ⅱ) were both higher than 99%. The removal of Cd(Ⅱ) and Ni(Ⅱ) was more in line with the pseudo-second-order kinetic model, indicating that their removal was dominated by chemisorption. The rate-controlling step for Cd(Ⅱ) and Ni(Ⅱ) removal was the fast removal stage, for which the rate depended on the liquid film diffusion and intraparticle diffusion (surface diffusion). Cd(Ⅱ) and Ni(Ⅱ) were mainly attached to the MCBC via surface adsorption and pore filling, in which the contribution of surface adsorption was greater. The maximum adsorption amounts of Cd(Ⅱ) and Ni(Ⅱ) by MCBC were individually 57.18 mg·g-1 and 23.29 mg·g-1, which were approximately 5.74 and 6.97 times that of the precursor (coconut shell biochar), respectively. The removal of Cd(Ⅱ) and Zn(Ⅱ) was spontaneous and endothermic and had obvious thermodynamic characteristics of chemisorption. Cd(Ⅱ) was attached to MCBC through ion exchange, co-precipitation, complexation reaction, and cation-π interaction, whereas Ni(Ⅱ) was removed by MCBC via ion exchange, co-precipitation, complexation reaction, and redox. Among them, co-precipitation and complexation were the main modes of surface adsorption of Cd(Ⅱ) and Ni(Ⅱ). Additionally, the proportion of amorphous Mn-O-Cd or Mn-O-Ni in the complex may have been higher. These research results will provide important technical support and theoretical basis for the practical application of commercial biochar in the treatment of heavy metal wastewater.


Assuntos
Cocos , Permanganato de Potássio , Cádmio , Adsorção
3.
Huan Jing Ke Xue ; 43(11): 5214-5223, 2022 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-36437093

RESUMO

In this study, original mulberry-biochar (M-BC) and magnetic iron oxide/mulberry stem biochar (Fe-BC) materials were prepared and characterized using mulberry stems as the raw material. The effects of carbonized temperature of Fe-BC and M-BC on dissolved organic carbon (DOC) and arsenic(As) speciation in soil leaching solutions were studied using soil incubation experiments. The results showed that:① Fe-BC was mainly composed of Fe3O4 and was magnetic, and the main functional groups were a C=O double bond, O-H bond, C-O bond, and Fe-O bond. The point of zero charge values (pHzpc) of Fe-BC-400, Fe-BC-500, and Fe-BC-600 were 8.92, 8.74, and 9.19, respectively, and the specific surface areas of Fe-BC-400, Fe-BC-500, and Fe-BC-600 were 447.412, 482.697, and 525.708 m2·g-1, respectively. ② With the increase in the carbonization temperature of M-BC and Fe-BC, the ρ(DOC) of soil leaching solution decreased 11.6-315.6 mg·L-1 and 78-365.6 mg·L-1, respectively. The DOC concentration of soil leaching solution was negatively correlated with soil EC. On day 35 of the incubation experiments, compared with that in soil after incubation without biochar (control), the As concentration of the soil leaching solution with Fe-BC-600 decreased by 55.96%, and there was no significant correlation between the As concentration of the soil leaching solution and the DOC concentration of the soil. ③ The available As concentration on day 35 in soil after incubation with Fe-BC was lower than that of the control group; the available As concentration on day 35 in soil incubated with Fe-BC-600 was reduced by 39.21%. ④ The residue As concentration on day 35 in soil incubated with M-BC decreased by 17.76%-49.11%. The residue As content on day 35 in soil incubated with Fe-BC-600 increased by 80%. Fe-BC-600 was most beneficial to reduce the DOC concentration and the available As content in soil leaching solution and increased the residue As content, thus reducing the bioavailability of soil arsenic. Therefore, this study can provide a theoretical basis for magnetic iron oxide/biochar remediation in arsenic-contaminated soil.


Assuntos
Arsênio , Morus , Poluentes do Solo , Arsênio/análise , Matéria Orgânica Dissolvida , Poluentes do Solo/análise , Solo/química , Fenômenos Magnéticos
4.
Huan Jing Ke Xue ; 42(4): 1714-1723, 2021 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742807

RESUMO

In order to clarify the pollution levels of heavy metals in the drinking water sources of the Lijiang River Basin, surface water samples were collected from 62 sites throughout the Lijiang River during May 2019. Heavy metals, including As, Cd, Cr, Mn, Cu, Zn, Hg, Co, and Sb, in the water samples were analysed. Health risk assessments associated with these nine heavy metals were conducted using the health risk assessment model from the US EPA. The results indicated that the order of the average concentrations of heavy metals in the water samples were Mn > Zn > As > Cr > Cu > Sb > Co > Cd > Hg. No heavy metals exceeded the limit values of the drinking water health standards in China (GB 5749-2006), and the concentrations were lower than the limitations of Grade Ⅰ level in the environmental quality standards for surface water (GB 3838-2002). According to the spatial distribution, the high contents areas of As, Cr, Zn, and Sb were predominantly distributed downstream of the Lijiang River, while the high contents areas of Cd, Cu, Hg, Co, and Mn were mostly distributed in the upper reaches. Multivariate analysis indicated that Cd, Mn, Cu, and Co were primarily from agricultural production; Cr, Zn, and Sb were mainly from tourism transportation; As was predominantly from the weathering of rock parent material and soil erosion; Hg was mainly from the improper disposal of domestic garbage and atmospheric deposition. The results of the health risk assessment indicated that children were more susceptible to the threat of heavy metal pollution than adults, and the average annual risk of carcinogenic heavy metals to human health through drinking water ingestion were higher than those of non-carcinogenic metals. The maximum personal average annual health risk of Cr was higher than the maximum allowance levels recommended by the International Commission on Radiological Protection (5×10-5 a-1). The average annual risk of non-carcinogenic heavy metals (10-14-10-9 a-1) decreased in the order of Co > Cu > Hg > Zn > Sb > Mn, which were far below the maximum allowance levels recommended by the ICRP.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adulto , Criança , China , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Água , Poluentes Químicos da Água/análise
5.
Sci Total Environ ; 708: 134552, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31787280

RESUMO

Sulfonamide antibiotics are contaminants of emerging concern (CEC). These CECs raise considerable alarm because they are commonly present in water environments. Studies on the environmental existence of CECs in karst areas of Guilin (Southern China) have yet to be reported. Thus, this study aims to investigate the presence, temporal and spatial distributions of sulfonamides in surface water and groundwater of four major aquatic environments (i.e., aquafarm water, ditch water, wetland water, and groundwater) in the Huixian karst wetland system of Guilin. Furthermore, this study aims to determine the ecological and human health risks of individual sulfonamides and their mixtures. Ten sulfonamides (i.e., sulfadiazine, sulfapyridine, sulfamerazine, trimethoprim, sulfamethazine, sulfamethoxypyridazine, sulfachloropyridazine, sulfamethoxazole, sulfadimethoxine, and sulfaquinoxaline) were observed in the study area. The highest average concentrations of aquafarm water, ditch water, wetland water, and groundwater were those of sulfadiazine (48.24 µg/L), sulfamethoxypyridazine (1281.50 µg/L), sulfamethoxazole (51.14 µg/L), and sulfamethazine (20.06 µg/L), respectively. The potential ecological risks of the detected compounds were much higher in ditch water than in aquafarm water, wetland water, and groundwater. The most ecological risks were observed for sulfachloropyridazine with a risk quotient (RQ) reaching 335.5 to green algae and 152 to Daphnia magna in ditch water. Similarly, sulfachloropyridazine posed the highest ecological risks to green algae among the ten sulfonamides in aquafarm water (RQ = 3.39), wetland water (RQ = 2.98), and groundwater (RQ = 3.6). Human health risk for age groups<12 months was observed from sulfonamide in drinking groundwater. Ecological and human health risks caused by sulfonamide mixtures were larger than the individual risks. Overall, ecological and human health risks caused by sulfonamides were observed in the study area.


Assuntos
Água Subterrânea , Antibacterianos , China , Monitoramento Ambiental , Humanos , Sulfonamidas , Água , Poluentes Químicos da Água , Áreas Alagadas
6.
Waste Manag ; 95: 450-457, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31351631

RESUMO

To observe the effect of aeration strategies on the dissipation of fluoroquinolones (FQs) during aerobic composting and explore their dissipation pathways, 60-L composting and 0.5-L incubation experiments were carried out in this study. Three aeration strategies (windrow, static aeration, feedback aeration) were applied to remove two typical FQs (Norfloxacin (NOR) and Ofloxacin (OFL)) during the 60-L composting of sewage sludge with 5 mg kg-1 of FQs added. Then, three 0.5 L-sample groups were taken during the three phases of the 60-L composting matrixes without FQs under static aeration, and were inoculated separately at 35 °C, 55 °C and 40 °C after being added with 5 mg kg-1 of FQs. In each group, incubation was carried out for three treatments (sterilization + no aeration, sterilization + aeration, and no sterilization + aeration). The FQs in the sewage sludge were mainly removed in the mesophilic and thermophilic phases in all the aeration strategies. The removal efficiencies were high for the whole process: 89.6-95.4% for NOR and 87.2-95.4% for OFL. The order of removal efficiency of FQs was static aeration > feedback aeration > windrow. The combination of composting phases facilitated to the rapid dissipation of FQs, which reduced the half-life to about 1/6 to 1/5 of the values in each phase. In the mesophilic and thermophilic compost, biodegradation was the main pathway for the dissipation of FQs followed by irreversible adsorption. Irreversible adsorption and biodegradation provided similar removal efficiencies for the curing compost. The volatilization of FQs was non-negligible in all phases.


Assuntos
Compostagem , Adsorção , Biodegradação Ambiental , Fluoroquinolonas , Esgotos
7.
Environ Sci Pollut Res Int ; 26(16): 16606-16615, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30989598

RESUMO

A suitable model to predict the toxicity of current and continuously emerging disinfection by-products (DBPs) is needed. This study aims to establish a reliable model for predicting the cytotoxicity of DBPs to Chinese hamster ovary (CHO) cells. We collected the CHO cytotoxicity data of 74 DBPs as the endpoint to build linear quantitative structure-activity relationship (QSAR) models. The linear models were developed by using multiple linear regression (MLR). The MLR models showed high performance in both internal (leave-one-out cross-validation, leave-many-out cross-validation, and bootstrapping) and external validation, indicating their satisfactory goodness of fit (R2 = 0.763-0.799), robustness (Q2LOO = 0.718-0.745), and predictive ability (CCC = 0.806-0.848). The generated QSAR models showed comparable quality on both the training and validation levels. Williams plot verified that the obtained models had wide application domains and covered the 74 structurally diverse DBPs. The molecular descriptors used in the models provided comparable information that influences the CHO cytotoxicity of DBPs. In conclusion, the linear QSAR models can be used to predict the CHO cytotoxicity of DBPs.


Assuntos
Desinfetantes/química , Desinfetantes/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Desinfecção , Dose Letal Mediana , Modelos Lineares , Análise Multivariada , Relação Quantitativa Estrutura-Atividade
8.
Ecotoxicology ; 23(4): 749-56, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24442416

RESUMO

Solution culture was carried to investigate capacity of synthetic aminopolycarboxylic acids (ethylenediamine tetraacetate, N-hydroxyethylenediaminetriacetic acid, and diethylenetriamine-pentaacetate) for enhancing botanical removal and transport of heavy metals (Cu and Zn) by plants. Biodegradable organic acids (citric acid, malic acid, and oxalic acid) were also selected as alternatives to compare them with synthesized chelating agents for effectiveness. Young rice seedlings (Oryza sativa L. cv. XZX 45) were grown in nutrient solutions treated with single or combined metal solutions in presence or absence of chelating compounds. Calculation by chemical equilibrium program VISUAL MINTEQ showed that different chelating compounds had various complex potential with Cu(2+) and Zn(2+) ions, in which synthetic chelators exhibited higher complexed capability than biodegradable organic acids. All applied synthetic aminopolycarboxylic acids significantly decreased removal of metal from nutrient solution (p < 0.01), while more or less effects of organic acids supplied on biosorptive potential were observed with all treatments (p > 0.05), compared with the treatment without metal ligands. Synthetic aminopolycarboxylic acids significantly decreased metal concentrations in plant materials in all treatments (p < 0.01). However, biodegradable organic acids decreased metal concentrations in roots (p < 0.01), but enhanced them in shoots (p < 0.01). Results obtained indicated that synthetic aminopolycarboxylic acids decreased uptake of metals by rice seedlings, but translocation of metals complexed within plant materials was evident. Although exogenous biodegradable organic acids showed negligible effect on botanical removal of metals, metals complexed with organic acids was more mobile than those complexed with other chelating agents. These information collected here had important implication for the use of biodegradable metal chelators in transport of essential micronutrients in plant nutrition.


Assuntos
Ácidos Carboxílicos/metabolismo , Cobre/metabolismo , Ácido Edético/análogos & derivados , Ácido Edético/metabolismo , Oryza/metabolismo , Ácido Pentético/metabolismo , Zinco/metabolismo , Biodegradação Ambiental , Quelantes , Plântula/metabolismo
9.
Environ Sci Pollut Res Int ; 18(9): 1623-32, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21611830

RESUMO

PURPOSE: The objective of this paper is to assess the impact of long-term electroplating industrial activities on heavy metal contamination in agricultural soils and potential health risks for local residents. METHODS: Water, soil, and rice samples were collected from sites upstream (control) and downstream of the electroplating wastewater outlet. The concentrations of heavy metals were determined by an atomic absorption spectrophotometer. Fractionation and risk assessment code (RAC) were used to evaluate the environmental risks of heavy metals in soils. The health risk index (HRI) and hazard index (HI) were calculated to assess potential health risks to local populations through rice consumption. RESULTS: Hazardous levels of Cu, Cr, and Ni were observed in water and paddy soils at sites near the plant. According to the RAC analysis, the soils showed a high risk for Ni and a medium risk for Cu and Cr at certain sites. The rice samples were primarily contaminated with Ni, followed by Cr and Cu. HRI values >1 were not found for any heavy metal. However, HI values for adults and children were 2.075 and 1.808, respectively. CONCLUSION: Water, paddy soil, and rice from the studied area have been contaminated by Cu, Cr, and Ni. The contamination of these elements is related to the electroplating wastewater. Although no single metal poses health risks for local residents through rice consumption, the combination of several metals may threaten the health of local residents. Cu and Ni are the key components contributing to the potential health risks.


Assuntos
Contaminação de Alimentos , Metais Pesados/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Produtos Agrícolas/química , Galvanoplastia , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Resíduos Industriais , Oryza/química , Medição de Risco , Fatores de Risco , Solo/análise , Solo/química
10.
Chemosphere ; 67(6): 1138-43, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17207838

RESUMO

Leersia hexandra Swartz (Gramineae), which occurs in Southern China, has been found to be a new chromium hyperaccumulator by means of field survey and pot-culture experiment. The field survey showed that this species had an extraordinary accumulation capacity for chromium. The maximum Cr concentration in the dry leaf matter was 2978 mg kg(-1) on the side of a pond near an electroplating factory. The average concentration of chromium in the leaves was 18.86 times as that in the pond sediment, and 297.41 times as that in the pond water. Under conditions of the nutrient solution culture, it was found that L. hexandra had a high tolerance and accumulation capacity to Cr(III) and Cr(VI). Under 60 mg l(-1) Cr(III) and 10 mg l(-1) Cr(VI) treatment, there was no significant decrease of biomass in the leaves of L. hexandra (p>0.05). The highest bioaccumulation coefficients of the leaves for Cr(III) and Cr(VI) were 486.8 and 72.1, respectively. However, L. hexandra had a higher accumulation capacity for Cr(III) than for Cr(VI). At the Cr(III) concentration of 10 mg l(-1) in the culture solution, the concentration of chromium in leaves was 4868 mg kg(-1), while at the same Cr(VI) concentration, the concentration of chromium in leaves was only 597 mg kg(-1). These results confirmed that L. hexandra is a chromium hyperaccumulator which grows rapidly with a great tolerance to Cr and broad ecological amplitude. This species could provide a new plant resource that explores the mechanism of Cr hyperaccumulation, and has potential for usage in the phytoremediation of Cr-contaminated soil and water.


Assuntos
Cromo/metabolismo , Poaceae/metabolismo , Biodegradação Ambiental , Biomassa , Poaceae/crescimento & desenvolvimento , Poluentes do Solo/metabolismo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...