Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 43(9): 472-480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37665596

RESUMO

The primary cilium functions as a cellular sensory organelle and signaling antenna that detects and transduces extracellular signals. Mutations in the human gene CILK1 (ciliogenesis associated kinase 1) cause abnormal cilia elongation and faulty Hedgehog signaling, associated with developmental disorders and epilepsy. CILK1 is a protein kinase that requires dual phosphorylation of its TDY motif for activation and its extended C-terminal intrinsically disordered region (IDR) mediates targeting to the basal body and substrate recognition. Proteomics previously identified katanin-interacting protein (KATNIP), also known as KIAA0556, as a CILK1 interacting partner. In this study we discovered that CILK1 colocalizes with KATNIP at the basal body and the CILK1 IDR is sufficient to mediate binding to KATNIP. Deletion analysis of KATNIP shows one of three domains of unknown function (DUF) is required for association with CILK1. KATNIP binding with CILK1 drastically elevated CILK1 protein levels and TDY phosphorylation in cells. This resulted in a profound increase in phosphorylation of known CILK1 substrates and suppression of cilia length. Thus, KATNIP functions as a regulatory subunit of CILK1 that potentiates its actions. This advances our understanding of the molecular basis of control of primary cilia.


Assuntos
Cílios , Humanos , Cílios/metabolismo , Proteínas Hedgehog , Katanina , Fosforilação , Transdução de Sinais
2.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897693

RESUMO

The primary cilium provides cell sensory and signaling functions. Cilia structure and function are regulated by ciliogenesis-associated kinase 1 (CILK1). Ciliopathies caused by CILK1 mutations show longer cilia and abnormal Hedgehog signaling. Our study aimed to identify small molecular inhibitors of CILK1 that would enable pharmacological modulation of primary cilia. A previous screen of a chemical library for interactions with protein kinases revealed that Alvocidib has a picomolar binding affinity for CILK1. In this study, we show that Alvocidib potently inhibits CILK1 (IC50 = 20 nM), exhibits selectivity for inhibition of CILK1 over cyclin-dependent kinases 2/4/6 at low nanomolar concentrations, and induces CILK1-dependent cilia elongation. Our results support the use of Alvocidib to potently and selectively inhibit CILK1 to modulate primary cilia.


Assuntos
Cílios , Ciliopatias , Cílios/metabolismo , Ciliopatias/metabolismo , Flavonoides/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Piperidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...