Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38712030

RESUMO

Introduction: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within the non-Hispanic White (NHW) population. Here we aimed to provide comprehensive insights into the proteomic landscape of AD across diverse racial and ethnic groups. Methods: Dorsolateral prefrontal cortex (DLPFC) and superior temporal gyrus (STG) brain tissues were donated from multiple centers (Mayo Clinic, Emory University, Rush University, Mt. Sinai School of Medicine) and were harmonized through neuropathological evaluation, specifically adhering to the Braak staging and CERAD criteria. Among 1105 DLPFC tissue samples (998 unique individuals), 333 were from African American donors, 223 from Latino Americans, 529 from NHW donors, and the rest were from a mixed or unknown racial background. Among 280 STG tissue samples (244 unique individuals), 86 were African American, 76 Latino American, 116 NHW and the rest were mixed or unknown ethnicity. All tissues were uniformly homogenized and analyzed by tandem mass tag mass spectrometry (TMT-MS). Results: As a Quality control (QC) measure, proteins with more than 50% missing values were removed and iterative principal component analysis was conducted to remove outliers within brain regions. After QC, 9,180 and 9,734 proteins remained in the DLPC and STG proteome, respectively, of which approximately 9,000 proteins were shared between regions. Protein levels of microtubule-associated protein tau (MAPT) and amyloid-precursor protein (APP) demonstrated AD-related elevations in DLPFC tissues with a strong association with CERAD and Braak across racial groups. APOE4 protein levels in brain were highly concordant with APOE genotype of the individuals. Discussion: This comprehensive region resolved large-scale proteomic dataset provides a resource for the understanding of ethnoracial-specific protein differences in AD brain.

2.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659743

RESUMO

INTRODUCTION: Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked African Americans (AA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS: To bridge this gap, Accelerating Medicines Partnership in AD (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS: We generated multi-omics data and curated and harmonized phenotypic data from AA (n=306), LA (n=326), or AA and LA (n=4) brain donors plus Non-Hispanic White (n=252) and other (n=20) ethnic groups, to establish a foundational dataset enriched for AA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION: Inclusion of traditionally underrepresented groups in multi-omics studies is essential to discover the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD.

3.
Biomolecules ; 14(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38254666

RESUMO

DUSP4 is a member of the DUSP (dual-specificity phosphatase) subfamily that is selective to the mitogen-activated protein kinases (MAPK) and has been implicated in a range of biological processes and functions in Alzheimer's disease (AD). In this study, we utilized the stereotactic delivery of adeno-associated virus (AAV)-DUSP4 to overexpress DUSP4 in the dorsal hippocampus of 5xFAD and wildtype (WT) mice, then used mass spectrometry (MS)-based proteomics along with the label-free quantification to profile the proteome and phosphoproteome in the hippocampus. We identified protein expression and phosphorylation patterns modulated in 5xFAD mice and examined the sex-specific impact of DUSP4 overexpression on the 5xFAD proteome/phosphoproteome. In 5xFAD mice, a substantial number of proteins were up- or down-regulated in both male and female mice in comparison to age and sex-matched WT mice, many of which are involved in AD-related biological processes, such as activated immune response or suppressed synaptic activities. Many proteins in pathways, such as immune response were found to be suppressed in response to DUSP4 overexpression in male 5xFAD mice. In contrast, such a shift was absent in female mice. For the phosphoproteome, we detected an array of phosphorylation sites regulated in 5xFAD compared to WT and modulated via DUSP4 overexpression in each sex. Interestingly, 5xFAD- and DUSP4-associated phosphorylation changes occurred in opposite directions. Strikingly, both the 5xFAD- and DUSP4-associated phosphorylation changes were found to be mostly in neurons and play key roles in neuronal processes and synaptic functions. Site-centric pathway analysis revealed that both the 5xFAD- and DUSP4-associated phosphorylation sites were enriched for a number of kinase sets in females but only a limited number of sets of kinases in male mice. Taken together, our results suggest that male and female 5xFAD mice responded to DUSP4 overexpression via shared and sex-specific molecular mechanisms, which might underly similar reductions in amyloid pathology in both sexes while learning deficits were reduced in only females with DUSP4 overexpression. Finally, we validated our findings with the sex-specific AD-associated proteomes in human cohorts and further developed DUSP4-centric proteomic network models and signaling maps for each sex.


Assuntos
Doença de Alzheimer , Fosfatases de Especificidade Dupla , Fosfatases da Proteína Quinase Ativada por Mitógeno , Proteoma , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Dependovirus , Fosfatases de Especificidade Dupla/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Proteômica , Transdução de Sinais
4.
Res Sq ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37886598

RESUMO

DUSP4 is a member of the DUSP (Dual-Specificity Phosphatase) subfamily that is selective to the mitogen-activated protein kinases (MAPK) and has been implicated in a range of biological processes and functions in Alzheimer's disease (AD). In this study, we utilized stereotactic delivery of adeno-associated virus (AAV)-DUSP4 to overexpress DUSP4 in the dorsal hippocampus of 5xFAD and wildtype (WT) mice, then used mass spectrometry (MS)-based proteomics along with label-free quantification to profile the proteome and phosphoproteome in the hippocampus. We identified patterns of protein expression and phosphorylation that are modulated in 5xFAD mice and examined the sex-specific impact of DUSP4 overexpression on the 5xFAD proteome/phosphoproteome. In 5xFAD mice, a substantial number of proteins were up- or down-regulated in both male and female mice in comparison to age and sex-matched WT mice, many of which are involved in AD-related biological processes, such as the activated immune response or suppression of synaptic activities. Upon DUSP4 overexpression, significantly regulated proteins were found in pathways that were suppressed, such as the immune response, in male 5xFAD mice. In contrast, such a shift was absent in female mice. For the phosphoproteome, we detected an array of phosphorylation sites that are regulated in 5xFAD compared to WT, and are modulated by DUSP4 overexpression in each sex. Interestingly, the changes in 5xFAD- and DUSP4-associated phosphorylation occurred in opposite directions. Strikingly, both the 5xFAD- and DUSP4-associated phosphorylation changes were found for the most part in neurons, and play key roles in neuronal processes and synaptic function. Site-centric pathway analysis revealed that both the 5xFAD- and DUSP4-associated phosphorylation sites were enriched for a number of kinase sets in female, but only a limited number of sets of kinases in male mice. Taken together, our results suggest that male and female 5xFAD mice respond to DUSP4 overexpression via shared and sex-specific molecular mechanisms, which might underly similar reductions in amyloid pathology in both sexes, while learning deficits were reduced in only females with DUSP4 overexpression. Finally, we validated our findings with the sex-specific AD-associated proteomes in human cohorts and further developed DUSP4-centric proteomic network models and signaling maps for each sex.

5.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745468

RESUMO

DUSP4 is a member of the DUSP (Dual-Specificity Phosphatase) subfamily that is selective to the mitogen-activated protein kinases (MAPK) and has been implicated in a range of biological processes and functions in Alzheimer's disease (AD). In this study, we utilized stereotactic delivery of adeno-associated virus (AAV)-DUSP4 to overexpress DUSP4 in the dorsal hippocampus of 5×FAD and wildtype (WT) mice, then used mass spectrometry (MS)-based proteomics along with label-free quantification to profile the proteome and phosphoproteome in the hippocampus. We identified patterns of protein expression and phosphorylation that are modulated in 5×FAD mice and examined the sex-specific impact of DUSP4 overexpression on the 5×FAD proteome/phosphoproteome. In 5×FAD mice, a substantial number of proteins were up- or down-regulated in both male and female mice in comparison to age and sex-matched WT mice, many of which are involved in AD-related biological processes, such as the activated immune response or suppression of synaptic activities. Upon DUSP4 overexpression, significantly regulated proteins were found in pathways that were suppressed, such as the immune response, in male 5×FAD mice. In contrast, such a shift was absent in female mice. For the phosphoproteome, we detected an array of phosphorylation sites that are regulated in 5×FAD compared to WT, and are modulated by DUSP4 overexpression in each sex. Interestingly, the changes in 5×FAD- and DUSP4-associated phosphorylation occurred in opposite directions. Strikingly, both the 5×FAD- and DUSP4-associated phosphorylation changes were found for the most part in neurons, and play key roles in neuronal processes and synaptic function. Site-centric pathway analysis revealed that both the 5×FAD- and DUSP4-associated phosphorylation sites were enriched for a number of kinase sets in female, but only a limited number of sets of kinases in male mice. Taken together, our results suggest that male and female 5×FAD mice respond to DUSP4 overexpression via shared and sex-specific molecular mechanisms, which might underly similar reductions in amyloid pathology in both sexes, while learning deficits were reduced in only females with DUSP4 overexpression. Finally, we validated our findings with the sex-specific AD-associated proteomes in human cohorts and further developed DUSP4-centric proteomic network models and signaling maps for each sex.

6.
Sci Data ; 10(1): 602, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684260

RESUMO

Alzheimer's disease (AD) is the most common form of dementia worldwide, with a projection of 151 million cases by 2050. Previous genetic studies have identified three main genes associated with early-onset familial Alzheimer's disease, however this subtype accounts for less than 5% of total cases. Next-generation sequencing has been well established and holds great promise to assist in the development of novel therapeutics as well as biomarkers to prevent or slow the progression of this devastating disease. Here we present a public resource of functional genomic data from the parahippocampal gyrus of 201 postmortem control, mild cognitively impaired (MCI) and AD individuals from the Mount Sinai brain bank, of which whole-genome sequencing (WGS), and bulk RNA sequencing (RNA-seq) were previously published. The genomic data include bulk proteomics and DNA methylation, as well as cell-type-specific RNA-seq and assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) data. We have performed extensive preprocessing and quality control, allowing the research community to access and utilize this public resource available on the Synapse platform at https://doi.org/10.7303/syn51180043.2 .


Assuntos
Doença de Alzheimer , Giro Para-Hipocampal , Humanos , Doença de Alzheimer/genética , Bioensaio , Multiômica
7.
Alzheimers Dement ; 19(8): 3472-3495, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36811307

RESUMO

INTRODUCTION: Recent studies revealed the association of abnormal methylomic changes with Alzheimer's disease (AD) but there is a lack of systematic study of the impact of methylomic alterations over the molecular networks underlying AD. METHODS: We profiled genome-wide methylomic variations in the parahippocampal gyrus from 201 post mortem control, mild cognitive impaired, and AD brains. RESULTS: We identified 270 distinct differentially methylated regions (DMRs) associated with AD. We quantified the impact of these DMRs on each gene and each protein as well as gene and protein co-expression networks. DNA methylation had a profound impact on both AD-associated gene/protein modules and their key regulators. We further integrated the matched multi-omics data to show the impact of DNA methylation on chromatin accessibility, which further modulates gene and protein expression. DISCUSSION: The quantified impact of DNA methylation on gene and protein networks underlying AD identified potential upstream epigenetic regulators of AD. HIGHLIGHTS: A cohort of DNA methylation data in the parahippocampal gyrus was developed from 201 post mortem control, mild cognitive impaired, and Alzheimer's disease (AD) brains. Two hundred seventy distinct differentially methylated regions (DMRs) were found to be associated with AD compared to normal control. A metric was developed to quantify methylation impact on each gene and each protein. DNA methylation was found to have a profound impact on not only the AD-associated gene modules but also key regulators of the gene and protein networks. Key findings were validated in an independent multi-omics cohort in AD. The impact of DNA methylation on chromatin accessibility was also investigated by integrating the matched methylomic, epigenomic, transcriptomic, and proteomic data.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Epigênese Genética , Redes Reguladoras de Genes , Proteômica , Metilação de DNA
8.
Hum Mol Genet ; 31(R1): R54-R61, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35994042

RESUMO

Neurodegenerative diseases such as Alzheimer's disease (AD) are characterized by the progressive loss of neurons in the brain and the spinal cord. The pathophysiology of AD is multifactorial with heterogeneous molecular manifestations. The lack of efficacious therapies for AD reinforces the importance of exploring in depth multifaceted disease mechanisms. Recent progresses on AD have generated a large amount of RNA-sequencing data at both bulk and single cell levels and revealed thousands of genes with expression changes in AD. However, the upstream regulators of such gene expression changes are largely unknown. Non-coding RNAs (ncRNAs) represent the majority of the human transcriptome, and regulatory ncRNAs have been found to play an important role in regulating gene expression. A single miRNA usually targets a number of mRNAs and thus such ncRNAs are particular important for understanding disease mechanisms and developing novel therapeutics. This review aims to summarize the recent findings on the roles of ncRNAs in AD from ncRNA-omics studies with a focus on ncRNA signatures, interactions between ncRNAs and mRNAs, and ncRNA-regulated pathways in AD. We also review the potential of specific ncRNAs to serve as biomarkers and therapeutic targets for AD. In the end, we point out future directions for studying ncRNAs in AD.


Assuntos
Doença de Alzheimer , MicroRNAs , RNA Longo não Codificante , Humanos , Doença de Alzheimer/metabolismo , RNA não Traduzido/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma/genética , RNA Mensageiro/genética , Biomarcadores , RNA Longo não Codificante/genética
9.
Alzheimers Dement ; 18(10): 1846-1867, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34918867

RESUMO

INTRODUCTION: A few copy number variations (CNVs) have been reported for Alzheimer's disease (AD). However, there is a lack of a systematic investigation of CNVs in AD based on whole genome sequencing (WGS) data. METHODS: We used four methods to identify consensus CNVs from the WGS data of 1,411 individuals and further investigated their functional roles in AD using the matched transcriptomic and clinicopathological data. RESULTS: We identified 3,012 rare AD-specific CNVs whose residing genes are enriched for cellular glucuronidation and neuron projection pathways. Genes whose mRNA expressions are significantly correlated with common CNVs are involved in major histocompatibility complex class II receptor activity. Integration of CNVs, gene expression, and clinical and pathological traits further pinpoints a key CNV that potentially regulates immune response in AD. DISCUSSION: We identify CNVs as potential genetic regulators of immune response in AD. The identified CNVs and their downstream gene networks reveal novel pathways and targets for AD.


Assuntos
Doença de Alzheimer , Variações do Número de Cópias de DNA , Humanos , Variações do Número de Cópias de DNA/genética , Doença de Alzheimer/genética , Sequenciamento Completo do Genoma , RNA Mensageiro
10.
Sci Adv ; 7(2)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523961

RESUMO

Alzheimer's disease (AD), the most common form of dementia, is recognized as a heterogeneous disease with diverse pathophysiologic mechanisms. In this study, we interrogate the molecular heterogeneity of AD by analyzing 1543 transcriptomes across five brain regions in two AD cohorts using an integrative network approach. We identify three major molecular subtypes of AD corresponding to different combinations of multiple dysregulated pathways, such as susceptibility to tau-mediated neurodegeneration, amyloid-ß neuroinflammation, synaptic signaling, immune activity, mitochondria organization, and myelination. Multiscale network analysis reveals subtype-specific drivers such as GABRB2, LRP10, MSN, PLP1, and ATP6V1A We further demonstrate that variations between existing AD mouse models recapitulate a certain degree of subtype heterogeneity, which may partially explain why a vast majority of drugs that succeeded in specific mouse models do not align with generalized human trials across all AD subtypes. Therefore, subtyping patients with AD is a critical step toward precision medicine for this devastating disease.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Camundongos , RNA/metabolismo , Análise de Sequência de RNA , Proteínas tau/metabolismo
11.
Neuron ; 109(2): 257-272.e14, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33238137

RESUMO

To identify the molecular mechanisms and novel therapeutic targets of late-onset Alzheimer's Disease (LOAD), we performed an integrative network analysis of multi-omics profiling of four cortical areas across 364 donors with varying cognitive and neuropathological phenotypes. Our analyses revealed thousands of molecular changes and uncovered neuronal gene subnetworks as the most dysregulated in LOAD. ATP6V1A was identified as a key regulator of a top-ranked neuronal subnetwork, and its role in disease-related processes was evaluated through CRISPR-based manipulation in human induced pluripotent stem cell-derived neurons and RNAi-based knockdown in Drosophila models. Neuronal impairment and neurodegeneration caused by ATP6V1A deficit were improved by a repositioned compound, NCH-51. This study provides not only a global landscape but also detailed signaling circuits of complex molecular interactions in key brain regions affected by LOAD, and the resulting network models will serve as a blueprint for developing next-generation therapeutic agents against LOAD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Encéfalo/fisiologia , Bases de Dados Genéticas , Redes Reguladoras de Genes/fisiologia , Transdução de Sinais/fisiologia , Doença de Alzheimer/patologia , Animais , Animais Geneticamente Modificados , Encéfalo/patologia , Bases de Dados Genéticas/tendências , Drosophila melanogaster , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Análise de Sequência de RNA/métodos
12.
Acta Neuropathol Commun ; 6(1): 144, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30577786

RESUMO

GJA1 (connexin43) has been predicted as the top key driver of an astrocyte enriched subnetwork associated with Alzheimer's disease (AD). In this study, we comprehensively examined GJA1 expression across 29 transcriptomic and proteomic datasets from post-mortem AD and normal control brains. We demonstrated that GJA1 was strongly associated with AD amyloid and tau pathologies and cognitive functions. RNA sequencing analysis of Gja1-/- astrocytes validated that Gja1 regulated the subnetwork identified in AD, and many genes involved in Aß metabolism. Astrocytes lacking Gja1 showed reduced Apoe protein levels as well as impaired Aß phagocytosis. Consistent with this, wildtype neurons co-cultured with Gja1-/- astrocytes contained higher levels of Aß species than those with wildtype astrocytes. Moreover, Gja1-/- astrocytes was more neuroprotective under Aß stress. Our results underscore the importance of GJA1 in AD pathogenesis and its potential for further investigation as a promising pharmacological target in AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Conexina 43/metabolismo , Redes Reguladoras de Genes/fisiologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Animais Recém-Nascidos , Apolipoproteínas E/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Encéfalo/patologia , Células Cultivadas , Estudos de Coortes , Conexina 43/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Proteômica
13.
Sci Data ; 5: 180185, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30204156

RESUMO

Alzheimer's disease (AD) affects half the US population over the age of 85 and is universally fatal following an average course of 10 years of progressive cognitive disability. Genetic and genome-wide association studies (GWAS) have identified about 33 risk factor genes for common, late-onset AD (LOAD), but these risk loci fail to account for the majority of affected cases and can neither provide clinically meaningful prediction of development of AD nor offer actionable mechanisms. This cohort study generated large-scale matched multi-Omics data in AD and control brains for exploring novel molecular underpinnings of AD. Specifically, we generated whole genome sequencing, whole exome sequencing, transcriptome sequencing and proteome profiling data from multiple regions of 364 postmortem control, mild cognitive impaired (MCI) and AD brains with rich clinical and pathophysiological data. All the data went through rigorous quality control. Both the raw and processed data are publicly available through the Synapse software platform.


Assuntos
Doença de Alzheimer , Proteoma , Transcriptoma , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Disfunção Cognitiva/genética , Estudos de Coortes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica , Humanos , Proteômica
14.
Neuropharmacology ; 119: 170-181, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28363773

RESUMO

Amylin is an important gut-brain axis hormone. Since amylin and amyloid-ß peptide (Aß) share similar ß sheet secondary structure despite not having the same primary sequences, we hypothesized that the accumulation of Aß in the brains of subjects with Alzheimer's disease (AD) might compete with amylin for binding to the amylin receptor (AmR). If true, adding exogenous amylin type peptides would compete with Aß and reduce the AD pathological cascade, improving cognition. Here we report that a 10-week course of peripheral treatment with human amylin significantly reduced multiple different markers associated with AD pathology, including reducing levels of phospho-tau, insoluble tau, two inflammatory markers (Iba1 and CD68), as well as cerebral Aß. Amylin treatment also led to improvements in learning and memory in two AD mouse models. Mechanistic studies showed that an amylin receptor antagonist successfully antagonized some protective effects of amylin in vivo, suggesting that the protective effects of amylin require interaction with its cognate receptor. Comparison of signaling cascades emanating from AmR suggest that amylin electively suppresses activation of the CDK5 pathway by Aß. Treatment with amylin significantly reduced CDK5 signaling in a receptor dependent manner, dramatically decreasing the levels of p25, the active form of CDK5 with a corresponding reduction in tau phosphorylation. This is the first report documenting the ability of amylin treatment to reduce tauopathy and inflammation in animal models of AD. The data suggest that the clinical analog of amylin, pramlintide, might exhibit utility as a therapeutic agent for AD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Ligantes , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Fragmentos de Peptídeos/uso terapêutico , Presenilina-1/genética , Presenilina-1/metabolismo , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/antagonistas & inibidores , Memória Espacial/efeitos dos fármacos , Proteínas tau/genética , Proteínas tau/metabolismo
15.
J Alzheimers Dis ; 56(3): 1087-1099, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28059785

RESUMO

Findings from Alzheimer's disease (AD) mouse models showed that amylin treatment improved AD pathology and enhanced amyloid-ß (Aß) brain to blood clearance; however, the mechanism was not investigated. Using the Tg2576 AD mouse model, a single intraperitoneal injection of amylin significantly increased Aß serum levels, and the effect was abolished by AC253, an amylin receptor antagonist, suggesting that amylin effect could be mediated by its receptor. Subsequent mechanistic studies showed amylin enhanced Aß transport across a cell-based model of the blood-brain barrier (BBB), an effect that was abolished when the amylin receptor was inhibited by two amylin antagonists and by siRNA knockdown of amylin receptor Ramp3. To explain this finding, amylin effect on Aß transport proteins expressed at the BBB was evaluated. Findings indicated that cells treated with amylin induced LRP1 expression, a major receptor involved in brain Aß efflux, in plasma membrane fraction, suggesting intracellular translocation of LRP1 from the cytoplasmic pool. Increased LRP1 in membrane fraction could explain, at least in part, the enhanced uptake and transport of Aß across the BBB. Collectively, our findings indicated that amylin induced Aß brain to blood clearance through amylin receptor by inducing LRP1 subcellular translocation to the plasma membrane of the BBB endothelium.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/fisiologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Técnicas de Cultura de Células , Células Cultivadas , Fármacos do Sistema Nervoso Central/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos Transgênicos , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/antagonistas & inibidores , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/genética , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/metabolismo , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo
16.
J Alzheimers Dis ; 56(1): 47-61, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27911303

RESUMO

Our recent study has demonstrated that peripheral amylin treatment reduces the amyloid pathology in the brain of Alzheimer's disease (AD) mouse models, and improves their learning and memory. We hypothesized that the beneficial effects of amylin for AD was beyond reducing the amyloids in the brain, and have now directly tested the actions of amylin on other aspects of AD pathogenesis, especially neuroinflammation. A 10-week course of peripheral amylin treatment significantly reduced levels of cerebral inflammation markers, Cd68 and Iba1, in amyloid precursor protein (APP) transgenic mice. Mechanistic studies indicated the protective effect of amylin required interaction with its cognate receptor because silencing the amylin receptor expression blocked the amylin effect on Cd68 in microglia. Using weighted gene co-expression network analysis, we discovered that amylin treatment influenced two gene modules linked with amyloid pathology: 1) a module related to proinflammation and transport/vesicle process that included a hub gene of Cd68, and 2) a module related to mitochondria function that included a hub gene of Atp5b. Amylin treatment restored the expression of most genes in the APP cortex toward levels observed in the wild-type (WT) cortex in these two modules including Cd68 and Atp5b. Using a human dataset, we found that the expression levels of Cd68 and Atp5b were significantly correlated with the neurofibrillary tangle burden in the AD brain and with their cognition. These data suggest that amylin acts on the pathological cascade in animal models of AD, and further supports the therapeutic potential of amylin-type peptides for AD.


Assuntos
Doença de Alzheimer/complicações , Anti-Inflamatórios/uso terapêutico , Córtex Cerebral/efeitos dos fármacos , Encefalite , Regulação da Expressão Gênica/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/uso terapêutico , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Transformada , Modelos Animais de Doenças , Encefalite/tratamento farmacológico , Encefalite/etiologia , Encefalite/patologia , Regulação da Expressão Gênica/genética , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/metabolismo
17.
J Neurosci Res ; 90(9): 1701-12, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22504928

RESUMO

Overexpression of the major myelin proteolipid protein (PLP) is detrimental to brain development and function and is the most common cause of Pelizaeus-Merzbacher disease. microRNA (miRNA), small, noncoding RNAs, have been shown to play critical roles in oligodendrocyte lineage. In this study, we sought to investigate whether miRNAs control PLP abundance. To identify candidate miRNAs involved in this regulation, we have examined differentiation-induced changes in the expression of miRNAs in the oligodendroglial cell line Oli-neu and in enhanced green fluorescent protein positive oligodendrocytes ex vivo. We have identified 145 miRNAs that are expressed in oligodendrocyte cell lineage progression. Dicer1 expression decreases in differentiated oligodendrocytes, and knock down of Dicer1 results in changes in miRNAs similar to those associated with differentiation. To identify miRNAs that control the PLP expression, we have selected miRNAs whose expression is lower in differentiated vs. undifferentiated Oli-neu cells and that have one or more binding site(s) in the PLP 3'-untranslated region (3'UTR). The PLP 3'UTR fused to the luciferase gene reduces the activity of the reporter, suggesting that it negatively regulates message stability or translation. Such suppression is relieved by knock down of miR-20a. Overexpression of miR-20a decreases expression of the endogenous PLP in primary oligodendrocytes and of the reporter gene. Deletion or mutation of the putative binding site for miR-20a in the PLP 3'UTR abrogated such effects. Our data indicate that miRNA expression is regulated by Dicer1 levels in differentiated oligodendrocytes and that miR-20a, a component of the cluster that controls oligodendrocyte cell number, regulates PLP gene expression through its 3'UTR.


Assuntos
RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica/genética , MicroRNAs/genética , Proteína Proteolipídica de Mielina/biossíntese , Oligodendroglia/metabolismo , Ribonuclease III/genética , Animais , Western Blotting , Diferenciação Celular/genética , Separação Celular , RNA Helicases DEAD-box/metabolismo , Camundongos , MicroRNAs/metabolismo , Proteína Proteolipídica de Mielina/genética , Oligodendroglia/citologia , Reação em Cadeia da Polimerase , Ribonuclease III/metabolismo , Transcriptoma , Transfecção
18.
PLoS One ; 7(12): e51266, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284676

RESUMO

In this study, we have investigated the global impact of heterogeneous nuclear Ribonuclear Protein (hnRNP) H/F-mediated regulation of splicing events and gene expression in oligodendrocytes. We have performed a genome-wide transcriptomic analysis at the gene and exon levels in Oli-neu cells treated with siRNA that targets hnRNPH/F compared to untreated cells using Affymetrix Exon Array. Gene expression levels and regulated exons were identified with the GenoSplice EASANA algorithm. Bioinformatics analyses were performed to determine the structural properties of G tracts that correlate with the function of hnRNPH/F as enhancers vs. repressors of exon inclusion. Different types of alternatively spliced events are regulated by hnRNPH/F. Intronic G tracts density, length and proximity to the 5' splice site correlate with the hnRNPH/F enhancer function. Additionally, 6% of genes are differently expressed upon knock down of hnRNPH/F. Genes that regulate the transition of oligodendrocyte progenitor cells to oligodendrocytes are differentially expressed in hnRNPH/F depleted Oli-neu cells, resulting in a decrease of negative regulators and an increase of differentiation-inducing regulators. The changes were confirmed in developing oligodendrocytes in vivo. This is the first genome wide analysis of splicing events and gene expression regulated by hnRNPH/F in oligodendrocytes and the first report that hnRNPH/F regulate genes that are involved in the transition from oligodendrocyte progenitor cells to oligodendrocytes.


Assuntos
Processamento Alternativo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Animais , Diferenciação Celular/genética , Éxons/genética , Genômica , Camundongos , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
19.
J Biol Chem ; 286(6): 4059-71, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21127064

RESUMO

Highly conserved G runs, G1M2 and ISE, regulate the proteolipid protein (PLP)/DM20 ratio. We have investigated recruitment of U1 small nuclear ribonuclear protein (snRNP) by G1M2 and ISE and examined the effect of splice site strength, distance, and context on G run function. G1M2 is necessary for initial recruitment of U1snRNP to the DM20 5' splice site independent of the strength of the splice site. G1M2 regulates E complex formation and supports DM20 splicing when functional U1snRNP is reduced. By contrast, the ISE is not required for the initial recruitment of U1snRNP to the PLP 5' splice site. However, in close proximity to either the DM20 or the PLP 5' splice site, the ISE recruits U1snRNP to both splice sites. The ISE enhances DM20 splicing, whereas close to the PLP 5' splice site, it inhibits PLP splicing. Splicing enhancement and inhibition are mediated by heterogeneous nuclear ribonuclear protein (hnRNP)H/F. The data show that recognition of the DM20 5' splice site depends on G run-mediated recruitment of U1snRNA, whereas a complex interaction between the ISE G runs, context and position determines the functional outcome on splicing. The data suggest that different mechanisms underlie G run-mediated recognition of 5' splice sites and that context and position play a critical role.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Proteína Proteolipídica de Mielina/metabolismo , Sítios de Splice de RNA/fisiologia , Splicing de RNA/fisiologia , RNA Nuclear Pequeno/metabolismo , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Humanos , Proteína Proteolipídica de Mielina/genética , RNA Nuclear Pequeno/genética
20.
J Biol Chem ; 284(17): 11194-204, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19244236

RESUMO

In this study, we sought to investigate the mechanism by which heterogeneous nuclear ribonucleoprotein (hnRNP) H and F regulate proteolipid protein (PLP)/DM20 alternative splicing. G-rich sequences in exon 3B, G1 and M2, are required for hnRNPH- and F-mediated regulation of the PLP/DM20 ratio and, when placed between competing 5' splice sites in an alpha-globin minigene, direct hnRNPH/F-regulated alternative splicing. In contrast, the activity of the intronic splicing enhancer, which is necessary for PLP splicing, is only modestly reduced by removal of hnRNPH/F both in PLP and alpha-globin gene context. In vivo, hnRNPH reversed reduction of DM20 splicing induced by hnRNPH/F removal, whereas hnRNPF had little effect. Tethering of the MS2-hnRNPH fusion protein downstream of the DM20 5' splice site increased DM20 splicing, whereas MS2-hnRNPF did not. Binding of U1 small nuclear ribonucleoprotein (U1snRNP) to DM20 is greatly impaired by mutation of G1 and M2 and depletion of hnRNPH and F. Reconstitution of hnRNPH/F-depleted extracts with either hnRNPH or F restored U1snRNP binding. We conclude that hnRNPH and F regulate DM20 splicing by recruiting U1snRNP and that hnRNPH plays a primary role in DM20 splice site selection in vivo. Decreased expression of hnRNPH/F in differentiated oligodendrocytes may regulate the PLP/DM20 ratio by reducing DM20 5' splice site recognition by U1snRNP.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/química , Proteína Proteolipídica de Mielina/química , Proteolipídeos/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Processamento Alternativo , Sequência de Bases , Núcleo Celular/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Oligodendroglia/química , Ligação Proteica , Splicing de RNA , alfa-Globinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...