Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 625: 1321-1329, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29996429

RESUMO

The present research attempted to assess the seasonal variation of engineered nanoparticles (ENPs) in a major municipal wastewater treatment system. A monthly survey over a 12-month period was conducted to monitor the concentration of TiO2 and ZnO nanoparticles throughout the treatment process. Results showed inflow concentrations in the range of 21.6±5.0-391.0±43.0µg/L and 20.0±12.0-212.0±53.0µg/L for TiO2 and ZnO, respectively. Seasonal pattern of the inflow ENPs concentration showed elevated value in the summer and winter periods for both TiO2 and ZnO. Based on the concentration profile, the hydraulic flow rate, and the concentration of mixed liquid suspended solid (MLSS), the daily mass loading (DML) or mass flow rate of nanoparticles and the mass ratio of engineered nanoparticle to MLSS were calculated. DML provided a real-time estimate of temporal distribution of ENPs in the treatment processes. Results indicated a daily mass loading of 50.1±12.7 and 44.7±14.1kg/day (yearly average) for TiO2 and ZnO, respectively. The amount of ENPs captured by sludge particulates were, yearly average, of 7.1kg-ZnO/d and 39.8kg-TiO2/d, and 8.9kg-ZnO/d and 25.1kg-TiO2/d, by the primary and the secondary sludge particulates, respectively. ENPs to MLSS mass ratio also showed a seasonal patter similar to the inflow ENPs concentration, where summer and winter periods showed elevated values. Additionally, loss of ENPs throughout the treatment plant that was not accounted for, also can be estimated from the daily mass loading rate and the mass ratio of ENPs to MLSS. Based on the seasonal distribution of ENPs in wastewater treatment systems, especially the daily mass loading rate, it is possible to estimate the uses of nanoparticle-related commercial and personal care products in the urban areas and enable decision-making on the strategy of sludge disposal management.

2.
Sci Total Environ ; 590-591: 809-817, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28292607

RESUMO

The current study developed a rationalized method for the quantification and identification of engineered nanoparticles (ENPs) in wastewaters. A review of current literature revealed that overall, presently available methods focused on single ENP mostly and were applicable mainly to samples of low organic loadings or under well-controlled laboratory conditions. In the present research, procedures including dialysis for desalting and low-temperature oxidation for organic removal were used to pretreat samples of high organic loadings, specifically, municipal wastewater and sludge. SEM mapping technique identified the presence of nanoparticles, which was followed by ICP-OES quantification of different engineering nanoparticles in wastewater and sludge samples collected from two major regional municipal wastewater treatment plants. Results showed successful identification and quantification of nano-size titanium and zinc oxides from wastewater treatment plants studied. Concentration profile was mapped out for the wastewater treatment plants (WWTPs) using the method developed in this research. Results also showed an overall 80% and 68% removal of titanium and zinc by primary and secondary sludge particulates, respectively. Mass flux of engineered nanoparticles (ENPs) was also calculated to estimate the daily flow of engineered nanoparticles in the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA