Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2404213, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695334

RESUMO

Developing efficient and robust electrocatalysts toward the oxygen evolution reaction (OER) is critical for proton exchange membrane water electrolysis (PEMWE). RuO2 possesses intrinsically high OER activity, but the concurrent electrochemical dissolution leads to rapid deactivation. Here a unique RuO2 catalyst containing metallic Ru─Ru interactions (m-RuO2) is reported, which maintains stability in practical PEMWE for 100 h at 60 °C and 1 A cm-2. Experimental and theoretical investigations suggest that the presence of Ru─Ru interactions significantly increases the energy barrier for the formation of RuO2(OH)2, which is a key intermediate for Ru dissolution, and hence substantially mitigates the electrochemical corrosion of m-RuO2. Meanwhile, the Ru4d band center downshifts, accordingly, ensuring the high OER activity, and the participation of lattice oxygen in the OER is also suppressed at the Ru─Ru sites, further contributing to the enhanced durability. Interestingly, such enhanced stability is also dependent on the size of metallic Ru─Ru cluster, where the energy barrier is further increased for Ru3, but is decreased for Ru5. These results highlight the significance of local coordination structure modulation on the electrochemical stability of RuO2 and open a feasible avenue toward the development of robust OER electrocatalysts for high-performance PEMWE.

2.
Environ Sci Technol ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691809

RESUMO

Although electro-Fenton (EF) processes can avoid the safety risks raised by concentrated hydrogen peroxide (H2O2), the Fe(III) reduction has always been either unstable or inefficient at high pH, resulting in catalyst deactivation and low selectivity of H2O2 activation for producing hydroxyl radicals (•OH). Herein, we provided a strategy to regulate the surface dipole moment of TiO2 by Fe anchoring (TiO2-Fe), which, in turn, substantially increased the H2O2 activation for •OH production. The TiO2-Fe catalyst could work at pH 4-10 and maintained considerable degradation efficiency for 10 cycles. Spectroscopic analysis and a theoretical study showed that the less polar Fe-O bond on TiO2-Fe could finely tune the polarity of H2O2 to alter its empty orbital distribution, contributing to better ciprofloxacin degradation activity within a broad pH range. We further verified the critical role of the weakened polarity of H2O2 on its homolysis into •OH by theoretically and experimentally investigating Cu-, Co-, Ni-, Mn-, and Mo-anchored TiO2. This concept offers an avenue for elaborate design of green, robust, and pH-universal cathodic Fenton-like catalysts and beyond.

3.
Nat Commun ; 15(1): 3233, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622140

RESUMO

Electrochemical hydrogenation of acetonitrile based on well-developed proton exchange membrane electrolyzers holds great promise for practical production of ethylamine. However, the local acidic condition of proton exchange membrane results in severe competitive proton reduction reaction and poor selection toward acetonitrile hydrogenation. Herein, we conduct a systematic study to screen various metallic catalysts and discover Pd/C exhibits a 43.8% ethylamine Faradaic efficiency at the current density of 200 mA cm-2 with a specific production rate of 2912.5 mmol g-1 h-1, which is about an order of magnitude higher than the other screened metal catalysts. Operando characterizations indicate the in-situ formed PdHx is the active centers for catalytic reaction and the adsorption strength of the *MeCH2NH2 intermediate dictates the catalytic selectivity. More importantly, the theoretical analysis reveals a classic d-band mediated volcano curve to describe the relation between the electronic structures of catalysts and activity, which could provide valuable insights for designing more effective catalysts for electrochemical hydrogenation reactions and beyond.

4.
Nat Commun ; 15(1): 3231, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622167

RESUMO

Engineering atom-scale sites are crucial to the mitigation of polysulfide shuttle, promotion of sulfur redox, and regulation of lithium deposition in lithium-sulfur batteries. Herein, a homonuclear copper dual-atom catalyst with a proximal distance of 3.5 Å is developed for lithium-sulfur batteries, wherein two adjacent copper atoms are linked by a pair of symmetrical chlorine bridge bonds. Benefiting from the proximal copper atoms and their unique coordination, the copper dual-atom catalyst with the increased active interface concentration synchronously guide the evolutions of sulfur and lithium species. Such a delicate design breaks through the activity limitation of mononuclear metal center and represents a catalyst concept for lithium-sulfur battery realm. Therefore, a remarkable areal capacity of 7.8 mA h cm-2 is achieved under the scenario of sulfur content of 60 wt.%, mass loading of 7.7 mg cm-2 and electrolyte dosage of 4.8 µL mg-1.

5.
Adv Mater ; : e2312369, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581648

RESUMO

Traditional noble metal oxide, such as RuO2, is considered a benchmark catalyst for acidic oxygen evolution reaction (OER). However, its practical application is limited due to sluggish activity and severe electrochemical corrosion. In this study, Ru-Fe nanoparticles loading on carbon felt (RuFe@CF) is synthesized via an ultrafast Joule heating method as an active and durable OER catalyst in acidic conditions. Remarkably low overpotentials of 188 and 269 mV are achieved at 10 and 100 mA cm-2, respectively, with a robust stability up to 620 h at 10 mA cm-2. When used as an anode in a proton exchange membrane water electrolyzer, the catalyst shows more than 250 h of stability at a water-splitting current of 200 mA cm-2. Experimental characterizations reveal the presence of a Ru-based oxide nanosheath on the surface of the catalyst during OER tests, suggesting a surface reconstruction process that enhances the intrinsic activity and inhibits continuous metal dissolution. Moreover, density functional theory calculations demonstrate that the introduction of Fe into the RuFe@CF catalyst reduces the energy barrier and boosts its activities. This work offers an effective and universal strategy for the development of highly efficient and stable catalysts for acidic water splitting.

6.
Clin Transl Med ; 14(4): e1650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38649772

RESUMO

BACKGROUND: Although many molecules have been investigated as biomarkers for spinal cord injury (SCI) or ischemic stroke, none of them are specifically induced in central nervous system (CNS) neurons following injuries with low baseline expression. However, neuronal injury constitutes a major pathology associated with SCI or stroke and strongly correlates with neurological outcomes. Biomarkers characterized by low baseline expression and specific induction in neurons post-injury are likely to better correlate with injury severity and recovery, demonstrating higher sensitivity and specificity for CNS injuries compared to non-neuronal markers or pan-neuronal markers with constitutive expressions. METHODS: In animal studies, young adult wildtype and global Atf3 knockout mice underwent unilateral cervical 5 (C5) SCI or permanent distal middle cerebral artery occlusion (pMCAO). Gene expression was assessed using RNA-sequencing and qRT-PCR, while protein expression was detected through immunostaining. Serum ATF3 levels in animal models and clinical human samples were measured using commercially available enzyme-linked immune-sorbent assay (ELISA) kits. RESULTS: Activating transcription factor 3 (ATF3), a molecular marker for injured dorsal root ganglion sensory neurons in the peripheral nervous system, was not expressed in spinal cord or cortex of naïve mice but was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Additionally, ATF3 protein levels in mouse blood significantly increased 1 day after SCI or ischemic stroke. Importantly, ATF3 protein levels in human serum were elevated in clinical patients within 24 hours after SCI or ischemic stroke. Moreover, Atf3 knockout mice, compared to the wildtype mice, exhibited worse neurological outcomes and larger damage regions after SCI or ischemic stroke, indicating that ATF3 has a neuroprotective function. CONCLUSIONS: ATF3 is an easily measurable, neuron-specific biomarker for clinical SCI and ischemic stroke, with neuroprotective properties. HIGHLIGHTS: ATF3 was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Serum ATF3 protein levels are elevated in clinical patients within 24 hours after SCI or ischemic stroke. ATF3 exhibits neuroprotective properties, as evidenced by the worse neurological outcomes and larger damage regions observed in Atf3 knockout mice compared to wildtype mice following SCI or ischemic stroke.


Assuntos
Fator 3 Ativador da Transcrição , Biomarcadores , AVC Isquêmico , Neurônios , Traumatismos da Medula Espinal , Animais , Feminino , Humanos , Masculino , Camundongos , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Biomarcadores/metabolismo , Biomarcadores/sangue , Modelos Animais de Doenças , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/sangue , Camundongos Knockout , Neurônios/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/complicações
7.
Bioact Mater ; 36: 238-255, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38481566

RESUMO

Apoptosis has long been recognized as a significant mechanism for inhibiting tumor formation, and a plethora of stimuli can induce apoptosis during the progression and treatment of tumors. Moreover, tumor-derived apoptotic extracellular vesicles (apoEVs) are inevitably phagocytosed by live tumor cells, promoting tumor heterogeneity. Understanding the mechanism by which apoEVs regulate tumor cells is imperative for enhancing our knowledge of tumor metastasis and recurrence. Herein, we conducted a series of in vivo and in vitro experiments, and we report that tumor-derived apoEVs promoted lung adenocarcinoma (LUAD) metastasis, self-renewal and chemoresistance. Mechanistically, we demonstrated that apoEVs facilitated tumor metastasis and stemness by initiating the epithelial-mesenchymal transition program and upregulating the transcription of the stem cell factor SOX2. In addition, we found that ALDH1A1, which was transported by apoEVs, activated the NF-κB signaling pathway by increasing aldehyde dehydrogenase enzyme activity in recipient tumor cells. Furthermore, targeting apoEVs-ALDH1A1 significantly abrogated these effects. Collectively, our findings elucidate a novel mechanism of apoEV-dependent intercellular communication between apoptotic tumor cells and live tumor cells that promotes the formation of cancer stem cell-like populations, and these findings reveal that apoEVs-ALDH1A1 may be a potential therapeutic target and biomarker for LUAD metastasis and recurrence.

8.
ACS Nano ; 18(14): 10312-10323, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38533779

RESUMO

Defect engineering is essential for the development of efficient electrocatalysts at the atomic level. While most work has focused on various vacancies as effective catalytic modulators, little attention has been paid to the relation between the local atomic environment of vacancies and catalytic activities. To face this challenge, we report a facile synthetic approach to manipulate the local atomic environments of vacancies in MoS2 with tunable Mo-to-S ratios. Our studies indicate that the MoS2 with more Mo terminated vacancies exhibits better hydrogen evolution reaction (HER) performance than MoS2 with S terminated vacancies and defect-free MoS2. The improved performance originates from the adjustable orbital orientation and distribution, which is beneficial for regulating H adsorption and eventually boosting the intrinsic per-site activity. This work uncovers the underlying essence of the local atomic environment of vacancies on catalysis and provides a significant extension of defect engineering for the rational design of transition metal dichalcogenides (TMDs) catalysts and beyond.

9.
Sci Bull (Beijing) ; 69(8): 1081-1090, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38395652

RESUMO

Maximally exploiting the active sites of iridium catalysts is essential for building low-cost proton exchange membrane (PEM) electrolyzers for green H2 production. Herein, we report a novel microdrop-confined fusion/blasting (MCFB) strategy for fabricating porous hollow IrO1-x microspheres (IrO1-x-PHM) by introducing explosive gas mediators from a NaNO3/glucose mixture. Moreover, the developed MCFB strategy is demonstrated to be general for synthesizing a series of Ir-based composites, including Ir-Cu, Ir-Ru, Ir-Pt, Ir-Rh, Ir-Pd, and Ir-Cu-Pd and other noble metals such as Rh, Ru, and Pt. The hollow structures can be regulated using different organics with NaNO3. The assembled PEM electrolyzer with IrO1-x-PHM as the anode catalyst (0.5 mg/cm2) displays an impressive polarization voltage of 1.593 and 1.726 V at current densities of 1 and 2A/cm2, respectively, outperforming commercial IrOx catalysts and most of the ever-reported iridium catalysts with such low catalyst loading. More importantly, the breakdown of the polarization loss indicates that the improved performance is due to the facilitated mass transport induced by the hollowness. This study offers a versatile platform for fabricating efficient Ir-based catalysts for PEM electrolyzers and beyond.

10.
Sci Bull (Beijing) ; 69(8): 1100-1108, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38423872

RESUMO

Catalytic conversion of nitrate (NO3-) pollutants into ammonia (NH3) offers a sustainable and promising route for both wastewater treatment and NH3 synthesis. Alkali cations are prevalent in nitrate solutions, but their roles beyond charge balance in catalytic NO3- conversion have been generally ignored. Herein, we report the promotion effect of K+ cations in KNO3 solution for NO3- reduction over a TiO2-supported Ni single-atom catalyst (Ni1/TiO2). For photocatalytic NO3- reduction reaction, Ni1/TiO2 exhibited a 1.9-fold NH3 yield rate with nearly 100% selectivity in KNO3 solution relative to that in NaNO3 solution. Mechanistic studies reveal that the K+ cations from KNO3 gradually bonded with the surface of Ni1/TiO2, in situ forming a K-O-Ni moiety during reaction, whereas the Na+ ions were unable to interact with the catalyst in NaNO3 solution. The charge accumulation on the Ni sites induced by the incorporation of K atom promoted the adsorption and activation of NO3-. Furthermore, the K-O-Ni moiety facilitated the multiple proton-electron coupling of NO3- into NH3 by stabilizing the intermediates.

11.
Nat Commun ; 15(1): 1614, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388525

RESUMO

While Ru owns superior catalytic activity toward hydrogen oxidation reaction and cost advantages, the catalyst deactivation under high anodic potential range severely limits its potential to replace the Pt benchmark catalyst. Unveiling the deactivation mechanism of Ru and correspondingly developing protection strategies remain a great challenge. Herein, we develop atomic Pt-functioned Ru nanoparticles with excellent anti-deactivation feature and meanwhile employ advanced operando characterization tools to probe the underlying roles of Pt in the anti-deactivation. Our studies reveal the introduced Pt single atoms effectively prevent Ru from oxidative passivation and consequently preserve the interfacial water network for the critical H* oxidative release during catalysis. Clearly understanding the deactivation nature of Ru and Pt-induced anti-deactivation under atomic levels could provide valuable insights for rationally designing stable Ru-based catalysts for hydrogen oxidation reaction and beyond.

12.
Chem Commun (Camb) ; 59(94): 14013-14016, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37942830

RESUMO

The high unoccupied d band energy of FeS2 basically results in weak orbital coupling with water molecules, consequently leading to sluggish water dissociation kinetics. Herein, we demonstrate that the N-induced doping effect and phase transition engineering (FeS2 to N-Fe7S8) can downshift the unoccupied d orbitals and strengthen the interfacial orbital coupling to boost the water dissociation kinetics. The fabricated N-Fe7S8/carbon cloth (CC) displays superb hydrogen evolution reaction performance with a low overpotential (89 mV at 10 mA cm-2) and small Tafel slope (105 mV dec-1) under alkaline conditions. It is revealed that the electronic structure of Fe is modulated by N doping and phase transition. The downshifted d band energy can strengthen water adsorption and reduce the energy barrier of water dissociation. Our work provides a new strategy to modify metal sulfide electrocatalysts for electrochemical energy conversion.

13.
Mar Drugs ; 21(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37999388

RESUMO

Alginate oligosaccharides prepared by alginate lyases attracted great attention because of their desirable biological activities. However, the hydrolysis products are always a mixture of oligosaccharides with different degrees of polymerization, which increases the production cost because of the following purification procedures. In this study, an alginate lyase, Alg4755, with high product specificity was identified, heterologously expressed, and characterized from Vibrio alginolyticus S10, which was isolated from the intestine of sea cucumber. Alg4755 belonged to the PL7 family with two catalytic domains, which was composed of 583 amino acids. Enzymatic characterization results show that the optimal reaction temperature and pH of Alg4755 were 35 °C and 8.0, respectively. Furthermore, Alg4755 was identified to have high thermal and pH stability. Moreover, the final hydrolysis products of sodium alginate catalyzed by Alg4755 were mainly alginate disaccharides with a small amount of alginate trisaccharides. The results demonstrate that alginate lyase Alg4755 could have a broad application prospect because of its high product specificity and desirable catalytic properties.


Assuntos
Dissacarídeos , Vibrio alginolyticus , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Oligossacarídeos/metabolismo , Polissacarídeo-Liases/metabolismo , Alginatos/metabolismo
14.
J Neuroinflammation ; 20(1): 227, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798730

RESUMO

BACKGROUND: Some patients show persistent cognitive decline for weeks, months or even years after surgery, which seriously affects their long-term prognosis and quality of life. However, most previous basic studies have focused mainly on the mechanisms of early postoperative cognitive decline, whereas cognitive decline in the longer term after surgery is less well-understood. The subgranular zone of the dentate gyrus exhibits life-long neurogenesis, supporting hippocampus-dependent learning and memory. MAIN TEXT: The aim of this study was to investigate whether adult hippocampal neurogenesis (AHN) involves in cognitive decline later following surgery and to further explore the roles of CD8 + T lymphocytes infiltrating the hippocampal parenchyma after surgery in this pathological process. Cognitive function was examined in adult mice that underwent laparotomy combined with partial hepatectomy, and the results showed that cognitive decline persisted in mice who underwent surgery during the first postoperative month, even though there was a trend toward continuous improvement over time. Significantly decreased numbers of DCX + cells, BrdU + cells, and BrdU + /DCX + cells were observed on day 8 after surgery, and a significantly decreased number of NeuN + /BrdU + cells was observed on day 28 after surgery, which indicated inhibition of AHN. After surgery, T lymphocytes, the majority of which were CD8 + T cells, infiltrated the hippocampus and secreted Interferon-γ (IFN-γ). Depletion of CD8 + T cells could inhibit the increase of IFN-γ synthesis, improve hippocampal neurogenesis, and improve postoperative cognitive function. Hippocampal microinjection of IFN-γ neutralizing antibody or adeno-associated virus to knock down IFN-γ receptor 1 (IFNGR1) could also partially attenuate the inhibition of AHN and improve postoperative cognitive function. CONCLUSIONS: These results demonstrate that postoperative infiltration of CD8 + T cells into the hippocampus and subsequent secretion of IFN-γ contribute to the inhibition of AHN and cognitive decline later following surgery.


Assuntos
Disfunção Cognitiva , Qualidade de Vida , Camundongos , Humanos , Animais , Adulto , Bromodesoxiuridina , Hipocampo/patologia , Neurogênese/fisiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Interferon gama , Linfócitos T CD8-Positivos
15.
FASEB J ; 37(10): e23164, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37688590

RESUMO

Postoperative cognitive decline (POCD) is a common and serious complication following anesthesia and surgery; however, the precise mechanisms of POCD remain unclear. Our previous research showed that sevoflurane impairs adult hippocampal neurogenesis (AHN) and thus cognitive function in the aged brain by affecting neurotrophin-3 (NT-3) expression; however, the signaling mechanism involved remains unexplored. In this study, we found a dramatic decrease in the proportion of differentiated neurons with increasing concentrations of sevoflurane, and the inhibition of neural stem cell differentiation was partially reversed after the administration of exogenous NT-3. Understanding the molecular underpinnings by which sevoflurane affects NT-3 is key to counteracting cognitive dysfunction. Here, we report that sevoflurane administration for 2 days resulted in upregulation of histone deacetylase 9 (HDAC9) expression, which led to transcriptional inactivation of cAMP-response element binding protein (CREB). Due to the colocalization of HDAC9 and CREB within cells, this may be related to the interaction between HDAC9 and CREB. Anyway, this ultimately led to reduced NT-3 expression and inhibition of neural stem cell differentiation. Furthermore, knockdown of HDAC9 rescued the transcriptional activation of CREB after sevoflurane exposure, while reversing the downregulation of NT-3 expression and inhibition of neural stem cell differentiation. In summary, this study identifies a unique mechanism by which sevoflurane can inhibit CREB transcription through HDAC9, and this process reduces NT-3 levels and ultimately inhibits neuronal differentiation. This finding may reveal a new strategy to prevent sevoflurane-induced neuronal dysfunction.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Neurônios , Adulto , Humanos , Idoso , Sevoflurano/farmacologia , Diferenciação Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Elementos de Resposta
16.
Mar Drugs ; 21(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37504926

RESUMO

The study aimed to investigate the effects of alcalase, papain, flavourzyme, and neutrase on the structural characteristics and bioactivity stability of Cucumaria frondosa intestines and ovum hydrolysates (CFHs). The findings revealed that flavourzyme exhibited the highest hydrolysis rate (51.88% ± 1.87%). At pH 2.0, the solubility of hydrolysate was the lowest across all treatments, while the solubility at other pH levels was over 60%. The primary structures of hydrolysates of different proteases were similar, whereas the surface hydrophobicity of hydrolysates was influenced by the types of proteases used. The hydrolysates produced by different proteases were also analyzed for their absorption peaks and antioxidant activity. The hydrolysates of flavourzyme had ß-fold absorption peaks (1637 cm-1), while the neutrase and papain hydrolysates had N-H bending vibrations. The tertiary structure of CFHs was unfolded by different proteases, exposing the aromatic amino acids and red-shifting of the λ-peak of the hydrolysate. The alcalase hydrolysates showed better antioxidant activity in vitro and better surface hydrophobicity than the other hydrolysates. The flavourzyme hydrolysates displayed excellent antioxidant stability and pancreatic lipase inhibitory activity during gastrointestinal digestion, indicating their potential use as antioxidants in the food and pharmaceutical industries.


Assuntos
Cucumaria , Peptídeo Hidrolases , Animais , Peptídeo Hidrolases/metabolismo , Papaína/química , Antioxidantes/farmacologia , Hidrólise , Intestinos , Subtilisinas/química , Hidrolisados de Proteína/química
17.
Thorac Cancer ; 14(23): 2275-2287, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37424293

RESUMO

BACKGROUND: Serine protease inhibitors clade B serpins (SERPINBs) are the largest subclass of protease inhibitors, once thought of as a tumor suppressor gene family. However, some SERPINBs exhibit functions unrelated to the inhibition of catalytic activity. METHODS: The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Gene Set Cancer Analysis (GSCA), and cBioPortal databases were utilized to investigate SERPINBs expression, prognostic correlation, and genomic variation in 33 cancer types. We also conducted a comprehensive transcriptome analysis in multiple lung adenocarcinoma (LUAD) cohorts to reveal the molecular mechanism of SERPINB5 in LUAD. Then, qPCR and immunohistochemistry were used to verify the expression and prognostic value of SERPINB5 in LUAD patients. Furthermore, knockdown and overexpression of SERPINB5 in LUAD cell lines were performed to evaluate cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). RESULTS: The expression of SERPINB5 was upregulated and demethylated in LUAD, and its abnormally high expression was significantly correlated with poor overall survival (OS). In addition, the expression of SERPINB5 was analyzed to determine its prognostic value in LUAD and confirmed that SERPINB5 was an independent predictor of LUAD in TCGA and GEO cohorts and qPCR validation with 106 clinical samples. At last, A knockdown of SERPINB5 in LUAD cells reduced proliferation, migration, and EMT. Proliferation, migration, and invasion are promoted by the overexpression of SERPINB5. CONCLUSION: Therefore, SERPINB5 has shown potential as a prognostic biomarker for LUAD, and it may become a potential therapeutic target for lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Serpinas , Humanos , Serpinas/genética , Transição Epitelial-Mesenquimal , Prognóstico , Adenocarcinoma de Pulmão/genética , Proliferação de Células , Neoplasias Pulmonares/genética , Biomarcadores
18.
Nat Commun ; 14(1): 3847, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386000

RESUMO

Copper is well-known to be selective to primary amines via electrocatalytic nitriles hydrogenation. However, the correlation between the local fine structure and catalytic selectivity is still illusive. Herein, we find that residual lattice oxygen in oxide-derived Cu nanowires (OD-Cu NWs) plays vital roles in boosting the acetonitrile electroreduction efficiency. Especially at high current densities of more than 1.0 A cm-2, OD-Cu NWs exhibit relatively high Faradic efficiency. Meanwhile, a series of advanced in situ characterizations and theoretical calculations uncover that oxygen residues, in the form of Cu4-O configuration, act as electron acceptors to confine the free electron flow on the Cu surface, consequently improving the kinetics of nitriles hydrogenation catalysis. This work could provide new opportunities to further improve the hydrogenation performance of nitriles and beyond, by employing lattice oxygen-mediated electron tuning engineering.


Assuntos
Cobre , Elétrons , Hidrogenação , Acetonitrilas , Nitrilas , Catálise , Óxidos , Oxigênio
19.
Biology (Basel) ; 12(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37372093

RESUMO

Recent studies have highlighted the combination of activation of host immunogenic cell death (ICD) and tumor-directed cytotoxic strategies. However, overall multiomic analysis of the intrinsic ICD property in lung adenocarcinoma (LUAD) has not been performed. Therefore, the aim of this study was to develop an ICD-based risk scoring system to predict overall survival (OS) and immunotherapeutic efficacy in patients. In our study, both weighted gene co-expression network analysis (WGCNA) and LASSO-Cox analysis were utilized to identify ICDrisk subtypes (ICDrisk). Moreover, we identify genomic alterations and differences in biological processes, analyze the immune microenvironment, and predict the response to immunotherapy in patients with pan-cancer. Importantly, immunogenicity subgroup typing was performed based on the immune score (IS) and microenvironmental tumor neoantigens (meTNAs). Our results demonstrate that ICDrisk subtypes were identified based on 16 genes. Furthermore, high ICDrisk was proved to be a poor prognostic factor in LUAD patients and indicated poor efficacy of immune checkpoint inhibitor (ICI) treatment in patients with pan-cancer. The two ICDrisk subtypes displayed distinct clinicopathologic features, tumor-infiltrating immune cell patterns, and biological processes. The ISlowmeTNAhigh subtype showed low intratumoral heterogeneity (ITH) and immune-activated phenotypes and correlated with better survival than the other subtypes within the high ICDrisk group. This study suggests effective biomarkers for the prediction of OS in LUAD patients and immunotherapeutic response across Pan-cancer and contributes to enhancing our understanding of intrinsic immunogenic tumor cell death.

20.
Small ; 19(43): e2303360, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37381653

RESUMO

Transition metal oxides with high theoretical capacities are promising anode materials for lithium-ion batteries (LIBs). However, the sluggish reaction kinetics remain a bottleneck for fast-charging applications due to its slow Li+ migration rate. Herein, a strategy is reported of significantly reducing the Li+ diffusion barrier of amorphous vanadium oxide by constructing a specific ratio of the VO local polyhedron configuration in amorphous nanosheets. The optimized amorphous vanadium oxide nanosheets with a ratio ≈1:4 for octahedron sites (Oh ) to pyramidal sites (C4v ) revealed by Raman spectroscopy and X-ray absorption spectroscopy (XAS) demonstrate the highest rate capability (356.7 mA h g-1 at 10.0 A g-1 ) and long-term cycling life (455.6 mA h g-1 at 2.0 A g-1 over 1200 cycles). Density functional theory (DFT)calculations further verify that the local structure (Oh :C4v = 1:4) intrinsically changes the degree of orbital hybridization between V and O atoms and contributes to a higher intensity of electron occupied states near the Fermi level, thus resulting in a low Li+ diffusion barrier for favorable Li+ transport kinetics. Moreover, the amorphous vanadium oxide nanosheets possess a reversible VO vibration mode and volume expansion rate close to 0.3%, as determined through in situ Raman and in situ transmission electron microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...