Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(51): 56975-56985, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36524828

RESUMO

Organic semiconductors have been discovered to exhibit impressive surface-enhanced Raman scattering (SERS) activity recently. However, owing to the underdeveloped candidate materials and relatively low SERS sensitivity, practical application of SERS detection based on organic materials is still a challenge. Herein, we explored ways to further enhance the SERS sensitivity of π-conjugated fluorinated 7,7,8,8-tetracyanoquinodimethane derivatives (FnTCNQ, n = 2, 4) by utilizing the charge-localization effect induced by two-dimensional (2D) MoS2 flakes. A strong Raman signal enhancement in SERS has been realized via an organic/2D heterostructure constructed by FnTCNQ nanostructures grown on a 2D MoS2 flake. Moreover, F2TCNQ and F4TCNQ show different SESR sensitivities due to different numbers of cyano groups leading to different charge transfer (CT) directions. The SERS enhancement factor (EF) of methylene blue (MB) molecules on the optimal F4TCNQ/MoS2 nanocomposite substrate can reach as high as 2.531 × 106, and the concentration of the limit of detection (LOD) is as low as 10-10 M. The SERS results for MB, rhodamine 6G (R6G), and 4-aminothiophenol (4-ATP) molecules demonstrate that high versatility, low cost, good stability, and easy preparation will make the FnTCNQ/MoS2 SERS platform promising for the detection of trace molecules. The studies on the complex microscopic interaction of organic/2D composite nanomaterials will provide some novel insights into improved SERS performance and mechanisms.

2.
Nanomaterials (Basel) ; 11(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34443857

RESUMO

Research on engineering "hotspots" in the field of surface-enhanced Raman scattering (SERS) is at the forefront of contributing to the best sensing indicators. Currently, there is still an urgent need to design a high-strength and large-scale electric field distribution method in order to obtain an ideal SERS sensor. Here, we designed a three-dimensional (3D) Au/Ag nanoparticle (NP)/crossed carbon nanotube film SERS substrate. The proposed structure formed by the simple preparation process can perfectly coordinate the interaction between the SERS substrates, lasers, and molecules. The denser "hotspots" can be induced and then distributed in holes enclosed by Au/AgNPs and the gaps between them. This process was verified by numerical simulations. The experimental results show that the proposed SERS substrate possesses an excellent sensitivity of 10-12 M (rhodamine 6G (R6G)), an enhancement factor of 1.60 × 109, and a good signal reproducibility (the relative standard deviation is ~6.03%). We further use a Au/AgNP/crossed CNT substrate to detect complex solutions composed of toxic molecules, which shows that our proposed SERS substrate has a wide range of application potentials, especially in food safety.

3.
Nanotechnology ; 32(1): 015203, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32947272

RESUMO

A sensitive photodetection based on a novel hybrid CMOS inverter has been demonstrated. Unlike common photo-current type photodetectors, which convert optical signals to current, the CMOS inverter realizes voltage-output, overcoming the difficulty to monitor current signal in the range of nA. The hybrid CMOS logic inverter employs n-channel MoS2 nanosheet/perovskite heterojunction FET and p-channel organic pentacene FET in a planar architecture. In order to obtain high performance, we adopt the interdigital electrodes for the pentacene FET to enhance the current density of the p-channel, and stack perovskite on the MoS2 channel to modify the threshold voltage of the n-channel. As a result, a CMOS inverter with a voltage gain of more than ten is obtained. When VIN is around the transition voltage (-38 V), the inverter can obtain stable optical detection signal, the VOUT changes from 6 V in dark to 1 V under 633 nm light exposure. This finding indicates the potential to fabricate visible light detecting devices with voltage-output based on the inverter and may be further applicable for a photo-logic circuit.

4.
Opt Express ; 28(13): 18843-18858, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672175

RESUMO

Semiconductor-based surface enhanced Raman scattering (SERS) substrate design has attracted much interest due to the excellent photoelectronic and biochemical properties. The structural change caused by twin in semiconductor will have an influence on improving the Raman signals enhancement based on the chemical mechanism (CM). Here, we demonstrated the twin in semiconductor ZnSe nanowires as an ultrasensitive CM-based SERS platform. The SERS signals of the rhodamine 6G (R6G) and crystal violet (CV) molecules adsorbed on twin-ZnSe nanowires could be easily detected even with an ultralow concentration of 10-11 M and 10-8 M, respectively, and the corresponding enhancement factor (EF) were up to 6.12 × 107 and 3.02 × 105, respectively. In addition, the charge transfer (CT) between the twin-ZnSe nanowires and R6G molecule has been demonstrated theoretically with first-principles calculations based on density-functional theory (DFT). These results demonstrated the proposed ZnSe nanowires with twin as SERS substrate has a broader application in the field of biochemical sensing.

5.
Biosens Bioelectron ; 137: 255-262, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31121462

RESUMO

A suspended carbon nanotube (SCNT)-based field effective transistor (SCNT-FET), which was fabricated by utilizing the surface tension of liquid silver to suspend a CNT between two Pd electrodes, was proposed for the detection of DNA hybridization. Benefits from the separation between the CNT and the substrates could be observed; namely, the conductivity of a SCNT-FET was much higher (two orders of magnitude) than that of a FET based on an unsuspended CNT and about 50% sensing surface of CNT was freed from substrate. The Slater-Koster tight-binding method was adopted for geometry optimization and transport property calculation of the SCNT bound with DNA. The result showed that the conductance (G = 1/R) of the SCNT decreased in order with the binding of single-stranded DNA (SSDNA, probe DNA) and double-stranded DNA (DSDNA) and that the ability of DSDNA to weaken the conductivity of the SCNT was several times higher than that of SSDNA. SEM and Raman spectroscopy were used to demonstrate that DNA could be bound successfully onto the SCNT using a 1-pyrenebutanoic acid succinimidyl ester (PBASE) as a linkage. Ultra-high sensitivity detection of DNA [with a limit of detection (LOD) as low as 10 aM] was obtained using such an SCNT-FET, which showed a lower value than that of a previously reported FET DNA biosensor whose sensing materials were in direct contact with the substrate.


Assuntos
Técnicas Biossensoriais , DNA/isolamento & purificação , Hibridização de Ácido Nucleico , DNA/química , Sondas de DNA/química , DNA de Cadeia Simples/química , Condutividade Elétrica , Limite de Detecção , Nanotubos de Carbono/química , Análise Espectral Raman , Transistores Eletrônicos
6.
Nanotechnology ; 29(17): 175302, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29442999

RESUMO

In this work, we report an effective technique of fabricating ultraclean individual suspended single-walled carbon nanotube (SWNT) transistors. The surface tension of molten silver is utilized to suspend an individual SWNT between a pair of Pd electrodes during annealing treatment. This approach avoids the usage and the residues of organic resist attached to SWNTs, resulting ultraclean SWNT devices. And the resistance per micrometer of suspended SWNTs is found to be smaller than that of non-suspended SWNTs, indicating the effect of the substrate on the electrical properties of SWNTs. The ON-state resistance (∼50 kΩ), mobility of 8600 cm2 V-1 s-1 and large on/off ratio (∼105) of semiconducting suspended SWNT devices indicate its advantages and potential applications.

7.
Small ; 13(40)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28834264

RESUMO

Suspended single-walled carbon nanotubes (SWNTs) have advantages in mechanical resonators and highly sensitive sensors. Large-scale fabrication of suspended SWNTs array devices and uniformity among SWNTs devices remain a great challenge. This study demonstrates an effective, fast, and wafer-scale technique to fabricate suspended SWNT arrays, which is based on a dynamic motion of silver liquid to suspend and align the SWNTs between the prefabricated palladium electrodes in high temperature annealing treatment. Suspended, strained, and aligned SWNTs are synthesized on a 2 × 2 cm2 substrate with an average density of 10 tubes per micrometer. Under the optimal conditions, almost all SWNTs become suspended. A promising formation model of suspended SWNTs is established. The Kelvin four-terminal resistance measurement shows that these SWNT array devices have extreme low contact resistance. Meanwhile, the suspended SWNT array field effect transistors are fabricated by selective etching of metallic SWNTs using electrical breakdown. This method of large-scale fabrication of suspended architectures pushes the study of nanoscale materials into a new stage related to the electrical physics and industrial applications.

8.
Nanoscale ; 9(22): 7519-7525, 2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28534906

RESUMO

Recently, van der Waals heterostructures (vdWHs) have trigged intensive interest due to their novel electronic and optoelectronic properties. The vdWHs could be achieved by stacking two dimensional layered materials (2DLMs) on top of another and vertically kept by van der Waals forces. Furthermore, organic semiconductors are also known to interact via van der Waals forces, which offer an alternative for the fabrication of organic-inorganic p-n vdWHs. However, the performances of organic-inorganic p-n vdWHs produced so far are rather poor, owing to the unmatched electrical property between the 2DLMs and organic polycrystalline films. To make improvements in such novel heterostructure architectures, here we adopt high quality organic single crystals instead of polycrystalline films to construct a pentacene/MoS2 p-n vdWH. The vdWHs show a much higher current density and better anti-ambipolar characteristics with a highest transconductance of 211 nS. Moreover, device configuration-dependent transfer characteristics are demonstrated and a mechanism of a gate bias modulated vertical space charge zone existing at the vertical p-n vdWHs interface is proposed. These findings provide a new route to optimize the organic-inorganic p-n vdWHs and a guideline for studying the intrinsic properties of vdWHs.

9.
ACS Appl Mater Interfaces ; 8(45): 30920-30925, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27786451

RESUMO

In this study, we demonstrate a simple strategy for obtaining pinhole-free, homogeneous, well-crystallized perovskite films under ambient conditions. The preparation of perovskite film with high light-harvesting efficiency and long carrier lifetime is verified. By applying this film in TiO2-based perovskite solar cells (PVSCs), we achieved a high power-conversion efficiency (PCE) of 13.07%, which is doubled with respect to that of the PVSC not subjected to the same improvement procedure (6.54%). High open-circuit photovoltage, photocurrent density, and fill factor are the main contributions to the high PCE that results from low trap density and high recombination resistance of the resultant perovskite films. This work paves a new means for fabricating high-performance perovskite films and PVSC devices in an ambient atmosphere.

10.
Opt Express ; 14(19): 8535-9, 2006 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19529231

RESUMO

S-band Tm(3+)/Yb(3+) co-doped tellurite fiber amplifier pumped by a 980 nm laser diode is proposed and modeled taking into consideration of the energy transfer process from Yb(3+) to Tm(3+) and the laser cavity inside a co-doped fiber amplifier. S-band spectral gains for the co-doped fiber amplifiers are investigated. The results show that considerable gain improvement can be achieved by constructing 1050nm laser cavity inside the amplifier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...