Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 62: 100021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33380429

RESUMO

Microtubules are polymers composed of αß-tubulin subunits that provide structure to cells and play a crucial role in in the development and function of neuronal processes and cilia, microtubule-driven extensions of the plasma membrane that have sensory (primary cilia) or motor (motile cilia) functions. To stabilize microtubules in neuronal processes and cilia, α tubulin is modified by the posttranslational addition of an acetyl group, or acetylation. We discovered that acetylated tubulin in microtubules interacts with the membrane sphingolipid, ceramide. However, the molecular mechanism and function of this interaction are not understood. Here, we show that in human induced pluripotent stem cell-derived neurons, ceramide stabilizes microtubules, which indicates a similar function in cilia. Using proximity ligation assays, we detected complex formation of ceramide with acetylated tubulin in Chlamydomonas reinhardtii flagella and cilia of human embryonic kidney (HEK293T) cells, primary cultured mouse astrocytes, and ependymal cells. Using incorporation of palmitic azide and click chemistry-mediated addition of fluorophores, we show that a portion of acetylated tubulin is S-palmitoylated. S-palmitoylated acetylated tubulin is colocalized with ceramide-rich platforms in the ciliary membrane, and it is coimmunoprecipitated with Arl13b, a GTPase that mediates transport of proteins into cilia. Inhibition of S-palmitoylation with 2-bromo palmitic acid or inhibition of ceramide biosynthesis with fumonisin B1 reduces formation of the Arl13b-acetylated tubulin complex and its transport into cilia, concurrent with impairment of ciliogenesis. Together, these data show, for the first time, that ceramide-rich platforms mediate membrane anchoring and interaction of S-palmitoylated proteins that are critical for cilium formation, stabilization, and function.


Assuntos
Tubulina (Proteína)
2.
Methods Mol Biol ; 2187: 87-98, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32770502

RESUMO

Extracellular vesicles (EVs) are secreted by eukaryotic cells and serve as carriers for a variety of cell signaling factors, including RNAs, proteins, and lipids. We described a unique population of EVs, the membrane of which is highly enriched with the sphingolipid ceramide. We suggested that ceramide in the EV membrane is organized in ceramide-rich platforms (CRPs), a type of lipid raft that mediates interaction of ceramide with ceramide-associated proteins (CAPs). Here, we describe methods using anti-ceramide antibody to isolate ceramide-enriched EVs and detect exosomes after uptake into recipient cells. In addition, we discuss methods for EV analysis using nanoparticle tracking and mass spectrometry. The methods can be extended to the isolation of other types of EVs and "mobile rafts" transported by EVs from donor to recipient cells using antibodies against lipids specific for these EVs.


Assuntos
Ceramidas/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Anticorpos/metabolismo , Linhagem Celular , Exossomos/metabolismo , Humanos , Espectrometria de Massas/métodos , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Nanopartículas/metabolismo , Transdução de Sinais/fisiologia , Esfingolipídeos/metabolismo
3.
Acta Neuropathol Commun ; 8(1): 60, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345374

RESUMO

Amyloid-ß (Aß) associates with extracellular vesicles termed exosomes. It is not clear whether and how exosomes modulate Aß neurotoxicity in Alzheimer's disease (AD). We show here that brain tissue and serum from the transgenic mouse model of familial AD (5xFAD) and serum from AD patients contains ceramide-enriched and astrocyte-derived exosomes (termed astrosomes) that are associated with Aß. In Neuro-2a cells, primary cultured neurons, and human induced pluripotent stem cell-derived neurons, Aß-associated astrosomes from 5xFAD mice and AD patient serum were specifically transported to mitochondria, induced mitochondrial clustering, and upregulated the fission protein Drp-1 at a concentration corresponding to 5 femtomoles Aß/L of medium. Aß-associated astrosomes, but not wild type or control human serum exosomes, mediated binding of Aß to voltage-dependent anion channel 1 (VDAC1) and subsequently, activated caspases. Aß-associated astrosomes induced neurite fragmentation and neuronal cell death, suggesting that association with astrosomes substantially enhances Aß neurotoxicity in AD and may comprise a novel target for therapy.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Ceramidas/metabolismo , Exossomos/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Apoptose/fisiologia , Astrócitos/patologia , Exossomos/patologia , Humanos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/patologia
4.
Front Cell Dev Biol ; 7: 166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475148

RESUMO

Ceramide-rich platforms (CRPs) mediate association of proteins with the sphingolipid ceramide and may regulate protein interaction in membrane contact sites to the cytoskeleton, organelles, and infectious pathogens. However, visualization of ceramide association to proteins is one of the greatest challenges in understanding the cell biology of ceramide. Here we introduce a novel labeling technique for ceramide-associated proteins (CAPs) by combining photoactivated cross-linking of a bioorthogonal and bifunctional ceramide analog, pacFACer with proximity ligation assays (PLAs). pacFACer cross-linked to CAPs is covalently attached to a fluorophore using click chemistry. PLAs use antibodies to: (1) the candidate CAP and the fluorophore (PLA1); and (2) the CAP and ceramide (PLA2). PLA1 shows the subcellular localization of a particular CAP that is cross-linked to pacFACer, while PLA2 tests if the cross-linked CAP forms a complex with endogenous ceramide. Two proteins, tubulin and voltage-dependent anion channel 1 (VDAC1), were cross-linked to pacFACer and showed PLA signals for a complex with ceramide and pacFACer, which were predominantly colocalized with microtubules and mitochondria, respectively. Binding of tubulin and VDAC1 to ceramide was confirmed by coimmunoprecipitation assays using anti ceramide antibody. Cross-linking to pacFACer was confirmed using click chemistry-mediated attachment of biotin and streptavidin pull-down assays. Inhibition of ceramide synthases with fumonisin B1 (FB1) reduced the degree of pacFACer cross-linking and complex formation with ceramide, while it was enhanced by amyloid beta peptide (Aß). Our results show that endogenous ceramide is critical for mediating cross-linking of CAPs to pacFACer and that a combination of cross-linking with PLAs (cross-link/PLA) is a novel tool to visualize CAPs and to understand the regulation of protein interaction with ceramide in CRPs.

5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(10): 1514-1524, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31176039

RESUMO

The sphingolipid ceramide regulates beta-oxidation of medium and long chain fatty acids in mitochondria. It is not known whether it also regulates oxidation of very long chain fatty acids (VLCFAs) in peroxisomes. Using affinity chromatography, co-immunoprecipitation, and proximity ligation assays we discovered that ceramide interacts with Hsd17b4, an enzyme critical for peroxisomal VLCFA oxidation and docosahexaenoic acid (DHA) generation. Immunocytochemistry showed that Hsd17b4 is distributed to ceramide-enriched mitochondria-associated membranes (CEMAMs). Molecular docking and in vitro mutagenesis experiments showed that ceramide binds to the sterol carrier protein 2-like domain in Hsd17b4 adjacent to peroxisome targeting signal 1 (PTS1), the C-terminal signal for interaction with peroxisomal biogenesis factor 5 (Pex5), a peroxin mediating transport of Hsd17b4 into peroxisomes. Inhibition of ceramide biosynthesis induced translocation of Hsd17b4 from CEMAMs to peroxisomes, interaction of Hsd17b4 with Pex5, and upregulation of DHA. This data indicates a novel role of ceramide as a molecular switch regulating interaction of Hsd17b4 with Pex5 and peroxisomal function.


Assuntos
Ceramidas/metabolismo , Proteína Multifuncional do Peroxissomo-2/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/metabolismo , Animais , Células Cultivadas , Ácidos Docosa-Hexaenoicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Modelos Moleculares , Mapas de Interação de Proteínas , Transporte Proteico
6.
Glia ; 67(3): 498-511, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30484906

RESUMO

Accumulating evidence indicates that neuroinflammation contributes to the pathogenesis and exacerbation of neurodegenerative disorders, such as Alzheimer's disease (AD). Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid that regulates many pathophysiological processes including inflammation. We present evidence here that the spinster homolog 2 (Spns2), a S1P transporter, promotes microglia pro-inflammatory activation in vitro and in vivo. Spns2 knockout (Spns2KO) in primary cultured microglia resulted in significantly reduced levels of pro-inflammatory cytokines induced by lipopolysaccharide (LPS) and amyloid-beta peptide 1-42 oligomers (Aß42) when compared with littermate controls. Fingolimod (FTY720), a S1P receptor 1 (S1PR1) functional antagonist and FDA approved drug for relapsing-remitting multiple sclerosis, partially blunted Aß42-induced pro-inflammatory cytokine generation, suggesting that Spns2 promotes microglia pro-inflammatory activation through S1P-signaling. Spns2KO significantly reduced Aß42-induced nuclear factor kappa B (NFκB) activity. S1P increased, while FTY720 dampened, Aß42-induced NFκB activity, suggesting that Spns2 activates microglia inflammation through, at least partially, NFκB pathway. Spns2KO mouse brains showed significantly reduced Aß42-induced microglia activation/accumulation and reduced levels of pro-inflammatory cytokines when compared with age-matched controls. More interestingly, Spns2KO ameliorated Aß42-induced working memory deficit detected by Y-Maze. In summary, these results suggest that Spns2 promotes pro-inflammatory polarization of microglia and may play a crucial role in AD pathogenesis.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Proteínas de Transporte de Ânions/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Citocinas/metabolismo , Cloridrato de Fingolimode/farmacologia , Lipopolissacarídeos/farmacologia , Lisofosfolipídeos/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Knockout , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/metabolismo
7.
Adv Biol Regul ; 70: 51-64, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30287225

RESUMO

For many decades, research on sphingolipids associated with neurodegenerative disease focused on alterations in glycosphingolipids, particularly glycosylceramides (cerebrosides), sulfatides, and gangliosides. This seemed quite natural since many of these glycolipids are constituents of myelin and accumulated in lipid storage diseases (sphingolipidoses) resulting from enzyme deficiencies in glycolipid metabolism. With the advent of recognizing ceramide and its derivative, sphingosine-1-phosphate (S1P), as key players in lipid cell signaling and regulation of cell death and survival, research focus shifted toward these two sphingolipids. Ceramide and S1P are invoked in a plethora of cell biological processes participating in neurodegeneration such as ER stress, autophagy, dysregulation of protein and lipid transport, exosome secretion and neurotoxic protein spreading, neuroinflammation, and mitochondrial dysfunction. Hence, it is timely to discuss various functions of ceramide and S1P in neurodegenerative disease and to define sphingolipid metabolism and cell signaling pathways as potential targets for therapy.


Assuntos
Ceramidas/metabolismo , Lisofosfolipídeos/metabolismo , Doenças Neurodegenerativas/metabolismo , Esfingosina/análogos & derivados , Animais , Autofagia , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Esfingolipídeos/metabolismo , Esfingosina/metabolismo
8.
Exp Ther Med ; 15(4): 3623-3632, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29545892

RESUMO

The ovariectomized (OVX) mouse model has been widely accepted to be suitable for the study of postmenopausal osteoporosis. However, whether C57BL/6J mice, a commonly used genetic background mouse strain, is an appropriate model for postmenopausal osteoporosis remains controversial. The present study investigated the effect of the OVX model on alterations in bone density and microarchitecture in C57BL/6J female mice of different ages. C57BL/6J mice were divided into 8-, 12- and 16-week-old groups (OVX8, OVX12 and OVX16) from the beginning of OVX. At 8 weeks post-surgery, the mice were anesthetized and micro-computed tomography was used to analyze the bone density and microarchitecture. The results revealed that OVX-induced loss of cancellous bone was greatest in OVX8, moderate in OVX12, and only a weak bone loss was observed in the OVX16 group when compared with the SHAM16 control group. In addition, the effect of genetic backgrounds in response to the OVX model were examined. Several other strains of mice, including inbred (BALB/c) and outbred (ICR and Kunming), were used in the present study, all of which were subjected to OVX at 8 weeks of age. The present findings revealed that the highest rate of bone loss was detected in C57BL/6J female mice. In addition, treatment with estrogen (17ß-estradiol, 30 µg/kg five times per week) led to a significant increase in bone density in C57BL/6J mice compared with the other strains of mice. Therefore, these results may provide novel insights into the age- and strain-associated effect of OVX on regulating turnover of bone in female mice. The present findings also suggest 8-week-old C57BL/6J mice as an animal model for postmenopausal osteoporosis and preclinical testing of potential therapies for this disease.

9.
J Lipid Res ; 59(5): 795-804, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29567647

RESUMO

Sphingolipids are key signaling lipids in cancer. Genome-wide studies have identified neutral SMase-2 (nSMase2), an enzyme generating ceramide from SM, as a potential repressor for hepatocellular carcinoma. However, little is known about the sphingolipids regulated by nSMase2 and their roles in liver tumor development. We discovered growth of spontaneous liver tumors in 27.3% (9 of 33) of aged male nSMase2-deficient (fro/fro) mice. Lipidomics analysis showed a marked increase of SM in the tumor. Unexpectedly, tumor tissues presented with more than a 7-fold increase of C16-ceramide, concurrent with upregulation of ceramide synthase 5. The fro/fro liver tumor, but not adjacent tissue, exhibited substantial accumulation of lipid droplets, suggesting that nSMase2 deficiency is associated with tumor growth and increased neutral lipid generation in the tumor. Tumor tissue expressed significantly increased levels of CD133 and EpCAM mRNA, two markers of liver cancer stem-like cells (CSCs) and higher levels of phosphorylated signal transducer and activator of transcription 3, an essential regulator of stemness. CD133(+) cells showed strong labeling for SM and ceramide. In conclusion, these results suggest that SMase-2 deficiency plays a role in the survival or proliferation of CSCs, leading to spontaneous tumors, which is associated with tumor-specific effects on lipid homeostasis.


Assuntos
Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Esfingomielina Fosfodiesterase/deficiência , Animais , Proliferação de Células , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Knockout , Esfingomielina Fosfodiesterase/genética
10.
J Lipid Res ; 59(3): 488-506, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29321137

RESUMO

We reported that amyloid ß peptide (Aß42) activated neutral SMase 2 (nSMase2), thereby increasing the concentration of the sphingolipid ceramide in astrocytes. Here, we show that Aß42 induced mitochondrial fragmentation in wild-type astrocytes, but not in nSMase2-deficient cells or astrocytes treated with fumonisin B1 (FB1), an inhibitor of ceramide synthases. Unexpectedly, ceramide depletion was concurrent with rapid movements of mitochondria, indicating an unknown function of ceramide for mitochondria. Using immunocytochemistry and super-resolution microscopy, we detected ceramide-enriched and mitochondria-associated membranes (CEMAMs) that were codistributed with microtubules. Interaction of ceramide with tubulin was confirmed by cross-linking to N-[9-(3-pent-4-ynyl-3-H-diazirine-3-yl)-nonanoyl]-D-erythro-sphingosine (pacFACer), a bifunctional ceramide analog, and binding of tubulin to ceramide-linked agarose beads. Ceramide-associated tubulin (CAT) translocated from the perinuclear region to peripheral CEMAMs and mitochondria, which was prevented in nSMase2-deficient or FB1-treated astrocytes. Proximity ligation and coimmunoprecipitation assays showed that ceramide depletion reduced association of tubulin with voltage-dependent anion channel 1 (VDAC1), an interaction known to block mitochondrial ADP/ATP transport. Ceramide-depleted astrocytes contained higher levels of ATP, suggesting that ceramide-induced CAT formation leads to VDAC1 closure, thereby reducing mitochondrial ATP release, and potentially motility and resistance to Aß42 Our data also indicate that inhibiting ceramide generation may protect mitochondria in Alzheimer's disease.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Ceramidas/metabolismo , Mitocôndrias/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Membranas Mitocondriais/metabolismo , Tubulina (Proteína)/metabolismo
11.
Methods Mol Biol ; 1697: 153-171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28540559

RESUMO

Bioactive sphingolipids are important regulators for stem cell survival and differentiation. Most recently, we have coined the term "morphogenetic lipids" for sphingolipids that regulate stem cells during embryonic and postnatal development. The sphingolipid ceramide and its derivative, sphingosine-1-phosphate (S1P), can act synergistically as well as antagonistically on embryonic stem (ES) cell differentiation. We show here simple as well as state-of-the-art methods to analyze sphingolipids in differentiating ES cells and discuss new protocols to use ceramide and S1P analogs for the guided differentiation of mouse ES cells toward neuronal and glial lineage.


Assuntos
Ceramidas/metabolismo , Lisofosfolipídeos/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Esfingosina/análogos & derivados , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Ceramidas/análise , Ceramidas/química , Lisofosfolipídeos/análise , Lisofosfolipídeos/química , Camundongos , Estrutura Molecular , Células-Tronco Embrionárias Murinas/metabolismo , Neurogênese , Transdução de Sinais , Esfingosina/análise , Esfingosina/química , Esfingosina/metabolismo
12.
Neurochem Res ; 42(10): 2755-2768, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28474276

RESUMO

Multiple sclerosis (MS) is a demyelinating disorder characterized by massive neurodegeneration and profound axonal loss. Since myelin is enriched with sphingolipids and some of them display toxicity, biological function of sphingolipids in demyelination has been investigated in MS brain tissues. An elevation of sphingosine with a decrease in monoglycosylceramide and psychosine (myelin markers) was observed in MS white matter and plaque compared to normal brain tissue. This indicated that sphingosine toxicity might mediate oligodendrocyte degeneration. To explain the source of sphingosine accumulation, total sphingolipid profile was investigated in Lewis rats after inducing experimental autoimmune encephalomyelitis (EAE) and also in human oligodendrocytes in culture. An intermittent increase in ceramide followed by sphingosine accumulation in EAE spinal cord along with a stimulation of serine-palmitoyltransferase (SPT) activity was observed. Apoptosis was identified in the lumbar spinal cord, the most prominent demyelinating area, in the EAE rats. TNFα and IFNγ stimulation of oligodendrocytes in culture also led to an accumulation of ceramide with an elevation of sphingosine. Ceramide elevation was drastically blocked by myriocin, an inhibitor of SPT, and also by FTY720. Myriocin treatment also protected oligodendrocytes from cytokine mediated apoptosis or programmed cell death. Hence, we propose that sphingosine toxicity may contribute to demyelination in both EAE and MS, and the intermittent ceramide accumulation in EAE may, at least partly, be mediated via SPT activation, which is a novel observation that has not been previously reported.


Assuntos
Ceramidas/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Serina C-Palmitoiltransferase/metabolismo , Esfingosina/toxicidade , Animais , Modelos Animais de Doenças , Cloridrato de Fingolimode/farmacologia , Humanos , Bainha de Mielina/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Ratos , Medula Espinal/metabolismo
13.
J Alzheimers Dis ; 60(3): 757-768, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27662306

RESUMO

Extracellular vesicles (EVs), particularly exosomes, have emerged in the last 10 years as a new player in the progression of Alzheimer's disease (AD) with high potential for being useful as a diagnostic and treatment tool. Exosomes and other EVs are enriched with the sphingolipid ceramide as well as other more complex glycosphingolipids such as gangliosides. At least a subpopulation of exosomes requires neutral sphingomyelinase activity for their biogenesis and secretion. As ceramide is often elevated in AD, exosome secretion may be affected as well. Here, we review the available data showing that exosomes regulate the aggregation and clearance of amyloid-beta (Aß) and discuss the differences in data from laboratories regarding Aß binding, induction of aggregation, and glial clearance. We also summarize available data on the role of exosomes in extracellular tau propagation, AD-related exosomal mRNA/miRNA cargo, and the use of exosomes as biomarker and gene therapy vehicles for diagnosis and potential treatment.


Assuntos
Doença de Alzheimer/metabolismo , Vesículas Extracelulares/metabolismo , Esfingolipídeos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos
14.
J Neurosci ; 36(33): 8653-67, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27535912

RESUMO

UNLABELLED: Recent evidence implicates exosomes in the aggregation of Aß and spreading of tau in Alzheimer's disease. In neural cells, exosome formation can be blocked by inhibition or silencing of neutral sphingomyelinase-2 (nSMase2). We generated genetically nSMase2-deficient 5XFAD mice (fro;5XFAD) to assess AD-related pathology in a mouse model with consistently reduced ceramide generation. We conducted in vitro assays to assess Aß42 aggregation and glial clearance with and without exosomes isolated by ultracentrifugation and determined exosome-induced amyloid aggregation by particle counting. We analyzed brain exosome content, amyloid plaque formation, neuronal degeneration, sphingolipid, Aß42 and phospho-tau levels, and memory-related behaviors in 5XFAD versus fro;5XFAD mice using contextual and cued fear conditioning. Astrocyte-derived exosomes accelerated aggregation of Aß42 and blocked glial clearance of Aß42 in vitro Aß42 aggregates were colocalized with extracellular ceramide in vitro using a bifunctional ceramide analog preloaded into exosomes and in vivo using anticeramide IgG, implicating ceramide-enriched exosomes in plaque formation. Compared with 5XFAD mice, the fro;5XFAD mice had reduced brain exosomes, ceramide levels, serum anticeramide IgG, glial activation, total Aß42 and plaque burden, tau phosphorylation, and improved cognition in a fear-conditioned learning task. Ceramide-enriched exosomes appear to exacerbate AD-related brain pathology by promoting the aggregation of Aß. Reduction of exosome secretion by nSMase2 loss of function improves pathology and cognition in the 5XFAD mouse model. SIGNIFICANCE STATEMENT: We present for the first time evidence, using Alzheimer's disease (AD) model mice deficient in neural exosome secretion due to lack of neutral sphingomyelinase-2 function, that ceramide-enriched exosomes exacerbate AD-related pathologies and cognitive deficits. Our results provide rationale to pursue a means of inhibiting exosome secretion as a potential therapy for individuals at risk for developing AD.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Regulação da Expressão Gênica/genética , Esfingomielina Fosfodiesterase/deficiência , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Recém-Nascidos , Antígeno CD11b/metabolismo , Células Cultivadas , Transtornos Cognitivos/terapia , Modelos Animais de Doenças , Exossomos/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Presenilina-1/genética , Esfingomielina Fosfodiesterase/genética
15.
Mol Biol Cell ; 26(24): 4451-65, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26446842

RESUMO

Cilia are important organelles formed by cell membrane protrusions; however, little is known about their regulation by membrane lipids. We characterize a novel activation mechanism for glycogen synthase kinase-3 (GSK3) by the sphingolipids phytoceramide and ceramide that is critical for ciliogenesis in Chlamydomonas and murine ependymal cells, respectively. We show for the first time that Chlamydomonas expresses serine palmitoyl transferase (SPT), the first enzyme in (phyto)ceramide biosynthesis. Inhibition of SPT in Chlamydomonas by myriocin led to loss of flagella and reduced tubulin acetylation, which was prevented by supplementation with the precursor dihydrosphingosine. Immunocytochemistry showed that (phyto)ceramide was colocalized with phospho-Tyr-216-GSK3 (pYGSK3) at the base and tip of Chlamydomonas flagella and motile cilia in ependymal cells. The (phyto)ceramide distribution was consistent with that of a bifunctional ceramide analogue UV cross-linked and visualized by click-chemistry-mediated fluorescent labeling. Ceramide depletion, by myriocin or neutral sphingomyelinase deficiency (fro/fro mouse), led to GSK3 dephosphorylation and defective flagella and cilia. Motile cilia were rescued and pYGSK3 localization restored by incubation of fro/fro ependymal cells with exogenous C24:1 ceramide, which directly bound to pYGSK3. Our findings suggest that (phyto)ceramide-mediated translocation of pYGSK into flagella and cilia is an evolutionarily conserved mechanism fundamental to the regulation of ciliogenesis.


Assuntos
Ceramidas/metabolismo , Chlamydomonas/metabolismo , Cílios/metabolismo , Flagelos/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Acetilação , Animais , Células Cultivadas , Chlamydomonas/enzimologia , Cílios/enzimologia , Epêndima/citologia , Epêndima/metabolismo , Flagelos/enzimologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Serina C-Palmitoiltransferase/metabolismo , Tubulina (Proteína)/metabolismo
16.
Biomed Res Int ; 2015: 470934, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25866784

RESUMO

Autologous osteochondral transplantation (AOT) is a method for articular cartilage repair. However, several disadvantages of this method have been reported, such as transplanted cartilage degeneration and the lack of a connection between the grafted and adjacent cartilage tissues. To evaluate the effect of intra-articular administration of trichostatin A (TSA) on AOT, we conducted a case control study in a rabbit model. International Cartilage Repair Society (ICRS) macroscopic scores, the modified O'Driscoll histology scores, and real-time PCR were utilized to evaluate the results. At 4 weeks, both macroscopic and histological assessments showed that there was no significant difference between the TSA and control groups. However, the mean macroscopic and histological scores for the TSA-treated group were significantly higher than the scores for the control group at 12 weeks. TSA was shown to directly reduce collagen type II (COL2), aggrecan, matrix metalloproteinase (MMP), and a disintegrin and metalloproteinase domain with thrombospondin motifs 5 (ADAMTS-5) expression and to simultaneously repress the upregulation of MMP-3, MMP-9, and MMP-13 levels induced by interleukin 1ß (IL-1ß) in chondrocytes. In conclusion, TSA protects AOT grafts from degeneration, which may provide a benefit in the repair of articular cartilage injury.


Assuntos
Cartilagem Articular/metabolismo , Ácidos Hidroxâmicos/farmacologia , Modelos Biológicos , Animais , Autoenxertos , Colagenases/metabolismo , Injeções Intraoculares , Interleucina-1beta/metabolismo , Coelhos
17.
Int J Cancer ; 137(7): 1610-20, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25833198

RESUMO

Many breast cancer cells acquire multidrug resistance (MDR) mediated by ABC transporters such as breast cancer resistance protein (BCRP/ABCG2). Here we show that incubation of human breast cancer MDA-MB-231 cells with farnesoid X receptor antagonist guggulsterone (gug) and retinoid X receptor agonist bexarotene (bex) elevated ceramide, a sphingolipid known to induce exosome secretion. The gug+bex combination reduced cellular levels of BCRP to 20% of control cells by inducing its association and secretion with exosomes. Exogenous C6 ceramide also induced secretion of BCRP-associated exosomes, while siRNA-mediated knockdown or GW4869-mediated inhibition of neutral sphingomyelinase 2 (nSMase2), an enzyme generating ceramide, restored cellular BCRP. Immunocytochemistry showed that ceramide elevation and concurrent loss of cellular BCRP was prominent in Aldefluor-labeled breast cancer stem-like cells. These cells no longer excluded the BCRP substrate Hoechst 33342 and showed caspase activation and apoptosis induction. Consistent with reduced BCRP, ABC transporter assays showed that gug+bex increased doxorubicin retention and that the combination of gug+bex with doxorubicin enhanced cell death by more than fivefold. Taken together, our results suggest a novel mechanism by which ceramide induces BCRP secretion and reduces MDR, which may be useful as adjuvant drug treatment for sensitizing breast cancer cells and cancer stem cells to chemotherapy.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Proteínas de Neoplasias/metabolismo , Pregnenodionas/farmacologia , Tetra-Hidronaftalenos/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Bexaroteno , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ceramidas/biossíntese , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Humanos
18.
J Alzheimers Dis ; 46(1): 55-61, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25720409

RESUMO

We present evidence that 5XFAD Alzheimer's disease model mice develop an age-dependent increase in antibodies against ceramide, suggesting involvement of autoimmunity against ceramide in Alzheimer's disease pathology. To test this, we increased serum anti-ceramide IgG (2-fold) by ceramide administration and analyzed amyloid plaque formation in 5XFAD mice. There were no differences in soluble or total amyloid-ß levels. However, females receiving ceramide had increased plaque burden (number, area, and size) compared to controls. Ceramide-treated mice showed an increase of serum exosomes (up to 3-fold using Alix as marker), suggesting that systemic anti-ceramide IgG and exosome levels are correlated with enhanced plaque formation.


Assuntos
Envelhecimento , Doença de Alzheimer/sangue , Doença de Alzheimer/tratamento farmacológico , Ceramidas/administração & dosagem , Ceramidas/imunologia , Imunoglobulina G/sangue , Placa Amiloide/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Exossomos/metabolismo , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Placa Amiloide/fisiopatologia , Presenilina-1/genética , Presenilina-1/metabolismo
19.
PLoS One ; 9(10): e110119, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25330231

RESUMO

The sphingosine-1-phosphate (S1P) transporter Spns2 regulates myocardial precursor migration in zebrafish and lymphocyte trafficking in mice. However, its function in cancer has not been investigated. We show here that ectopic Spns2 expression induced apoptosis and its knockdown enhanced cell migration in non-small cell lung cancer (NSCLC) cells. Metabolically, Spns2 expression increased the extracellular S1P level while its knockdown the intracellular. Pharmacological inhibition of S1P synthesis abolished the augmented cell migration mediated by Spns2 knockdown, indicating that intracellular S1P plays a key role in this process. Cell signaling studies indicated that Spns2 expression impaired GSK-3ß and Stat3 mediated pro-survival pathways. Conversely, these pathways were activated by Spns2 knockdown, which explains the increased cell migration since they are also crucial for migration. Alterations of Spns2 were found to affect several enzymes involved in S1P metabolism, including sphingosine kinases, S1P phosphatases, and S1P lyase 1. Genetically, Spns2 mRNA level was found to be reduced in advanced lung cancer (LC) patients as quantified by using a small scale qPCR array. These data show for the first time that Spns2 plays key roles in regulating the cellular functions in NSCLC cells, and that its down-regulation is a potential risk factor for LC.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular , Neoplasias Pulmonares/patologia , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Animais , Proteínas de Transporte de Ânions/deficiência , Proteínas de Transporte de Ânions/genética , Apoptose , Transporte Biológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Espaço Intracelular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo
20.
J Cell Commun Signal ; 8(4): 353-62, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25280831

RESUMO

Stress adaptation effect provides cell protection against ischemia induced apoptosis. Whether this mechanism prevents other types of cell death in stroke is not well studied. This is an important question for regenerative medicine to treat stroke since other types of cell death such as necrosis are also prominent in the stroke brain apart from apoptosis. We report here that treatment with 17-N-Allylamino-17-demethoxygeldanamycin (17AAG), an Hsp90 inhibitor, protected neural progenitor cells (NPCs) against oxygen glucose deprivation (OGD) induced cell death in a dose dependent fashion. Cell death assays indicated that 17AAG not only ameliorated apoptosis, but also necrosis mediated by OGD. This NPC protection was confirmed by exposing cells to oxidative stress, a major stress signal prevalent in the stroke brain. Mechanistic studies demonstrated that 17AAG activated PI3K/Akt and MAPK cell protective pathways. More interestingly, these two pathways were activated in vivo by 17AAG and 17AAG treatment reduced infarct volume in a middle cerebral artery occlusion (MCAO) stroke model. These data suggest that 17AAG protects cells against major cell death pathways and thus might be used as a pharmacological conditioning agent for regenerative medicine for stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...