Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Angew Chem Int Ed Engl ; : e202404271, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700507

RESUMO

Integrating controllable spin states into single-molecule magnets (SMMs) enables precise manipulation of magnetic interactions at a molecular level, but remains a synthetic challenge. Herein, we developed a 3d-4f metallacrown (MC) magnet [DyNi5(quinha)5(Clsal)2(py)8](ClO4)∙4H2O (H2quinha = quinaldichydroxamic acid, HClsal = 5-chlorosalicylaldehyde) wherein a square planar NiII is stabilized by chemical stacking. Thioacetal modification was employed via post-synthetic ligand substitutions and yielded [DyNi5(quinha)5(Clsaldt)2(py)8](ClO4)·3H2O (HClsaldt = 4-chloro-2-(1,3-dithiolan-2-yl)phenol). Thanks to the additional ligations of thioacetal onto the NiII site, coordination-induced spin state switching (CISSS) took place with spin state altering from low-spin S = 0 to high-spin S = 1. The synergy of CISSS effect and magnetic interactions results in distinct energy splitting and magnetic dynamics. Magnetic studies indicate prominent enhancement of reversal barrier from 57 cm-1 to 423 cm-1, along with hysteresis opening and an over 200-fold increment in coercive field at 2 K. Ab initio calculations provide deeper insights into the exchange models and rationalize the relaxation/tunnelling pathways. These results demonstrate here provide a fire-new perspective in modulating the magnetization relaxation via the incorporation of controllable spin states and magnetic interactions facilitated by the CISSS approach.

2.
Nat Commun ; 15(1): 2896, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575592

RESUMO

The synthesis of dynamic chiral lanthanide complex emitters has always been difficult. Herein, we report three pairs of dynamic chiral EuIII complex emitters (R/S-Eu-R-1, R = Et/Me; R/S-Eu-Et-2) with aggregation-induced emission. In the molecular state, these EuIII complexes have almost no obvious emission, while in the aggregate state, they greatly enhance the EuIII emission through restriction of intramolecular rotation and restriction of intramolecular vibration. The asymmetry factor and the circularly polarized luminescence brightness are as high as 0.64 (5D0 → 7F1) and 2429 M-1cm-1 of R-Eu-Et-1, achieving a rare double improvement. R-Eu-Et-1/2 exhibit excellent sensing properties for low concentrations of CuII ions, and their detection limits are as low as 2.55 and 4.44 nM, respectively. Dynamic EuIII complexes are constructed by using chiral ligands with rotor structures or vibration units, an approach that opens a door for the construction of dynamic chiral luminescent materials.

3.
Fitoterapia ; 175: 105928, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38548027

RESUMO

α-DCs (α-dicarbonyls) have been proven to be closely related to aging and the onset and development of many chronic diseases. The wide presence of this kind of components in various foods and beverages has been unambiguously determined, but their occurrence in various phytomedicines remains in obscurity. In this study, we established and evaluated an HPLC-UV method and used it to measure the contents of four α-DCs including 3-deoxyglucosone (3-DG), glyoxal (GO), methylglyoxal (MGO), and diacetyl (DA) in 35 Chinese herbs after they have been derivatized with 4-nitro-1,2-phenylenediamine. The results uncover that 3-DG is the major component among the α-DCs, being detectable in all the selected herbs in concentrations ranging from 22.80 µg/g in the seeds of Alpinia katsumadai to 7032.75 µg/g in the fruit of Siraitia grosuenorii. The contents of the other three compounds are much lower than those of 3-DG, with GO being up to 22.65 µg/g, MGO being up to 55.50 µg/g, and DA to 18.75 µg/g, respectively. The data show as well the contents of the total four α-DCs in the herbs are generally in a comparable level to those in various foods, implying that herb medicines may have potential risks on human heath in view of the α-DCs.

4.
Arch Biochem Biophys ; 754: 109962, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499055

RESUMO

Acetohydroxyacid synthase (AHAS) is one of the key enzymes of the biosynthesis of branched-chain amino acids, it is also an effective target for the screening of herbicides and antibiotics. In this study we present a method for preparing Escherichia coli AHAS I holoenzyme (EcAHAS I) with exceptional stability, which provides a solid ground for us to re-investigate the in vitro catalytic properties of the protein. The results show EcAHAS I synthesized in this way exhibits similar function to Bacillus subtilis acetolactate synthase in its catalysis with pyruvate and 2-ketobutyrate (2-KB) as dual-substrate, producing four 2-hydroxy-3-ketoacids including (S)-2-acetolactate, (S)-2-aceto-2-hydroxybutyrate, (S)-2-propionyllactate, and (S)-2-propionyl-2-hydroxybutyrate. Quantification of the reaction indicates that the two substrates almost totally consume, and compound (S)-2-aceto-2- hydroxybutyrate forms in the highest yield among the four major products. Moreover, the protein also condenses two molecules of 2-KB to furnish (S)-2-propionyl-2-hydroxybutyrate. Further exploration manifests that EcAHAS I ligates pyruvate/2-KB and nitrosobenzene to generate two arylhydroxamic acids N-hydroxy-N-phenylacetamide and N-hydroxy-N-phenyl- propionamide. These findings enhance our comprehension of the catalytic characteristics of EcAHAS I. Furthermore, the application of this enzyme as a catalyst in construction of C-N bonds displays promising potential.


Assuntos
Acetolactato Sintase , Escherichia coli , Acetolactato Sintase/química , Glicogênio Sintase , Hidroxibutiratos , Piruvatos , Holoenzimas
5.
Dalton Trans ; 53(12): 5665-5675, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445301

RESUMO

The complex hydrolysis process and strong uncertainty of self-assembly rules have led to the precise synthesis of lanthanide clusters still being in the "blind-box" stage and simplifying the self-assembly process and developing reliable regulation strategies have attracted widespread attention. Herein, different anions are used to induce the construction of a series of dysprosium clusters with different shapes and connections. When the selected anion is NO3-, it blocks the coordination of metal sites around the cluster through the terminal group coordination mode, thereby controlling the growth of the cluster. When NO3- was changed to OAc-, OAc- adopted a bridging mode to induce modular units to build dysprosium clusters through an annular growth mechanism. Specifically, we selected 2-amino-6-methoxybenzoic acid, 2-hydroxybenzaldehyde, and Dy(NO3)3·6H2O to react under solvothermal conditions to obtain a pentanuclear dysprosium cluster (1). The five Dy(III) ions in 1 are distributed in upper and lower planes and are formed by the tight connection of nitrogen and oxygen atoms, and µ3-OH- bridges on the ligand. Next, octa-nuclear dysprosium cluster (2) were obtained by only regulating ligand substituents. The eight Dy(III) ions in 2 are tightly connected through ligand oxygen atoms, µ2-OH-, and µ3-OH- bridges, forming an elliptical {Dy/O} cluster core. Furthermore, only by changing NO3- to OAc-, a wheel-shaped tetradeca-nuclear dysprosium cluster (3) was obtained. Cluster 3 is composed of OAc- bridged multiple template Dy3L3 units and pulling of these template units connected by an annular growth mechanism forms a wheel-shaped cluster. The angle of the coordination site on NO3- is ∠ONO = 115°, which leads to the further extension of the metal sites on the periphery of clusters 1 and 2 through the terminal group coordination mode, thereby regulating the structural connection of the clusters. However, the angle of the coordination site on OAc- is ∠OCO = 128°, and a slightly increased angle leads to the formation of a ring-shaped cluster 3 by connecting the template units through bridging. This is a rare example of the controllable construction of lanthanide clusters with different shapes induced by the regulation of different anions, which provides a new method for the precise construction of lanthanide clusters with special shapes.

6.
Dalton Trans ; 53(8): 3675-3684, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38293800

RESUMO

Coordination-driven self-assembly processes often produce remarkable structures. In particular, self-assembly processes mediated by chiral template units have provided research ideas for analyzing the formation of chiral macromolecules in living organisms. In this study, by regulating the proportion of reaction raw materials in the "one-pot" synthesis of lanthanide complexes, we constructed chiral template units with different coordination orientations. As a result, lanthanide chiral chains connected to different structures were obtained through the self-assembly process of coordination recognition. In particular, driven by coordination, chiral template units with codirectional coordination points (called cis configuration) coordinate solely with cis template units during the self-assembly process to obtain a one-dimensional (1D) chain R-1/S-1 with an "S"-shaped distribution. Moreover, chiral template units with reversed coordination sites (called trans configuration) and twisted chiral template units are connected solely to templates with the same configuration to form a 1D chain R-2/S-2 with an axial helix. A circular dichroism spectrum shows that R-1/S-1 and R-2/S-2 are two pairs of enantiomers. The controllable construction of these two differential 1D chains is of great significance for studying coordination recognition at the molecular level. To the best of our knowledge, this is the first study to construct a 1D lanthanide chain through the self-assembly process of coordination recognition. The assembly process of nucleotides to form a hierarchical structure is simulated. This work provides a vivid example of the controllable synthesis of lanthanide complexes with precise structures and offers a new perspective on the formation process of chiral macromolecules that simulates natural processes.

7.
Inorg Chem ; 62(48): 19552-19564, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37976457

RESUMO

Pinacol lanthanide complexes PyraLn (Ln = Dy and Tb) with the restriction of intramolecular vibration were obtained for the first time via an in situ solvothermal coordination-catalyzed tandem reaction using cheap and simple starting materials, thereby avoiding complex, time-consuming, and expensive conventional organic synthesis strategies. A high-resolution electrospray ionization mass spectrometry (HRESI-MS) analysis confirmed the stability of PyraLn in an organic solution. The formation process of PyraLn was monitored in detail using time-dependent HRESI-MS, which allowed for proposing a mechanism for the formation of pinacol complexes via in situ tandem reactions under one-pot coordination-catalyzed conditions. The PyraLn complexes constructed using a pinacol ligand with a butterfly configuration exhibited distinct aggregation-induced emission (AIE) behavior, with the αAIE value as high as 60.42 according to the AIE titration curve. In addition, the PyraLn complexes in the aggregated state exhibit a rapid photoresponse to various 3d metal ions with low detection limits. These findings provide fast, facile, and high-yield access to dynamic, smart lanthanide complex emissions with bright emission and facilitate the rational construction of molecular machines for artificial intelligence.

8.
Natl Sci Rev ; 10(4): nwad036, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37200676

RESUMO

High-nuclear lanthanide clusters have shown great potential for the administration of high-dose mononuclear gadolinium chelates in magnetic resonance imaging (MRI). The development of high-nuclear lanthanide clusters with excellent solubility and high stability in water or solution has been challenging and is very important for expanding the performance of MRI. We used N-methylbenzimidazole-2-methanol (HL) and LnCl3·6H2O to synthesize two spherical lanthanide clusters, Ln32 (Ln = Ho, Ho32; and Ln = Gd, Gd32), which are highly stable in solution. The 24 ligands L- are all distributed on the periphery of Ln32 and tightly wrap the cluster core, ensuring that the cluster is stable. Notably, Ho32 can remain highly stable when bombarded with different ion source energies in HRESI-MS or immersed in an aqueous solution of different pH values for 24 h. The possible formation mechanism of Ho32 was proposed to be Ho(III), (L)- and H2O → Ho3(L)3/Ho3(L)4 → Ho4(L)4/Ho4(L)5 → Ho6(L)6/Ho6(L)7 → Ho16(L)19 → Ho28(L)15 → Ho32(L)24/Ho32(L)21/Ho32(L)23. To the best of our knowledge, this is the first study of the assembly mechanism of spherical high-nuclear lanthanide clusters. Spherical cluster Gd32, a form of highly aggregated Gd(III), exhibits a high longitudinal relaxation rate (1 T, r1 = 265.87 mM-1·s-1). More notably, compared with the clinically used commercial material Gd-DTPA, Gd32 has a clearer and higher-contrast T1-weighted MRI effect in mice bearing 4T1 tumors. This is the first time that high-nuclear lanthanide clusters with high water stability have been utilized for MRI. High-nuclear Gd clusters containing highly aggregated Gd(III) at the molecular level have higher imaging contrast than traditional Gd chelates; thus, using large doses of traditional gadolinium contrast agents can be avoided.

9.
Inorg Chem ; 62(14): 5863-5871, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36976914

RESUMO

It is difficult to subject simple reaction starting materials to a "one-pot" in situ tandem reaction without post-treatment under mild reaction conditions to obtain multimers with complex structural linkages. In organic synthesis, acetal reactions are often used to protect derivatives containing carbonyl functional groups. Therefore, acetal products tend to have very low stability, and performing multi-step condensation to obtain complex multimeric products is difficult. Herein, we achieved the first efficient multiple condensation of o-vanillin derivatives using Dy(OAc)3·6H2O undergoing a "one-pot" in situ tandem reaction under mild solvothermal conditions to obtain a series of dimers (I and II, clusters 1 and 2) and trimers (I and II, clusters 3 and 4). When methanol or ethanol is used as the solvent, the alcoholic solvent participates in acetal and dehydration reactions to obtain dimers (I and II). Surprisingly, when using acetonitrile as the reaction solvent, the o-vanillin derivatives undergo acetal and dehydration reactions to obtain trimers (I and II). In addition, clusters 1-4 all showed distinct single-molecule magnetic behaviors under zero-field conditions. To the best of our knowledge, this is the first time that multiple acetal reactions catalyzed by coordination-directed catalysis under "one-pot" conditions have been realized, opening a new horizon for the development of fast, facile, green, and efficient synthetic methods for complex compounds.

10.
Inorg Chem ; 62(3): 1075-1085, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36625763

RESUMO

Herein, hexaazamacrocyclic ligand LN6 was employed to construct a series of photochromic rare-earth complexes, [Ln(LN6)(NO3)2](BPh4) [1-Ln, Ln = Dy, Tb, Eu, Gd, Y; LN6 = (3E,5E,10E,12E)-3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane-3,5,10,12-tetraene]. The behavior of photogenerated radicals of hexaazamacrocyclic ligands was revealed for the first time. Upon 365 nm light irradiation, complexes 1-Ln exhibit photochromic behavior induced by photogenerated radicals according to EPR and UV-vis analyses. Static and dynamic magnetic studies of 1-Dy and irradiated product 1-Dy* indicate weak ferromagnetic interactions among DyIII ions and photogenerated LN6 radicals, as well as slow magnetization relaxation behavior under a 2 kOe applied field. Further fitting analyses show that the magnetization relaxation in 1-Dy* is markedly different from 1-Dy. Time-dependent fluorescence measurements reveal the characteristic luminescence quenching dynamics of lanthanide in the photochromic process. Especially for irradiated product 1-Eu*, the luminescence is almost completely quenched within 5 min with a quenching efficiency of 98.4%. The results reported here provide a prospect for the design of radical-induced photochromic lanthanide single-molecule magnets and will promote the further development of multiresponsive photomagnetic materials.


Assuntos
Elementos da Série dos Lantanídeos , Luminescência , Magnetismo , Imãs , Fluorescência , Ligantes
11.
Adv Sci (Weinh) ; 10(3): e2203351, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36437109

RESUMO

Diabetic retinopathy (DR) is the leading cause of vision loss in working age population. Intravitreal injection of anti-VEGF antibody is widely used in clinical practice. However, about 27% of patients show poor response to anti-VEGF therapy and about 50% of these patients continue to have macular thickening. Frequent intravitreal injections of antibody may increase the chance of endophthalmitis and cause visual loss or even blindness once happened. Therefore, there is a greatly urgent need for novel noninvasive target to treat DR clinically. Here, the formulation of a smart supramolecular peptide (SSP) eye drop for DR treatment that is effective via specifically identifying and capturing soluble semaphorin 4D (sSema4D), a strongly pro-angiogenesis and exudates factor, is reported. The SSP nanostructures encapsulate sSema4D so that all biological effects mediated by three receptors of sSema4D are inhibited, thereby significantly alleviating pathological retinal angiogenesis and exudates in DR. Moreover, it is found that combination of SSPs eye drop and anti-VEGF injection shows better therapeutic effect over anti-VEGF treatment alone. Overall, SSP eye drop provide an alternative and effective method for noninvasive treatment for DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Soluções Oftálmicas/uso terapêutico , Peptídeos , Injeções Intravítreas , Diabetes Mellitus/tratamento farmacológico
12.
Inorg Chem ; 61(50): 20513-20523, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36475643

RESUMO

By changing the coordination anions (OAc- and Cl-), reaction temperature, solvent, and ligand substituents, four Dy(III)-based complexes were obtained by directed synthesis, which are [Dy4(L1)2(L2)2(OAc)4]·4C2H5OH·3H2O (1, L1 = 1,3,4-thiadiazole-2,5-diamine, H4L2 = 6,6'-(((1,3,4-thiadiazole-2,5-diyl)bis(azanediyl))bis(((3-ethoxy-2-hydroxybenzyl)oxy)methylene))bis(2-ethoxyphen), [Dy4(L3)4(OAc)4]·C2H5OH·H2O (2, H3L3 = 2-(((5-amino-1,3,4-thiadiazol-2-yl)amino)((3-ethoxy-2-hydroxybenzyl)oxy)methyl)-6-ethoxyphenol)), [Dy6(L4)4(L5)2(µ3-OH)4(CH3O)4Cl4]Cl2 (3, H2L4 = 2-hydroxy-3-methoxybenzaldehyde, H2L5 = 2-(((5-amino-1,3,4-thiadiazol-2-yl)amino)(hydroxy)methyl)-6-methoxyphenol), and [Dy6(L6)4(L7)2(µ3-OH)4(CH3O)4Cl4]Cl2·2H3O (4, H2L6 = 2-hydroxy-3-ethoxybenzaldehyde, H2L7 = 2-(((5-amino-1,3,4-thiadiazol-2-yl)amino)(hydroxy)methyl)-6-ethoxyphenol). A series of acetal products (H4L2, H3L3, H2L5, and H2L7) were obtained through dehydration in situ tandem reactions. Magnetic studies show that complexes 1-4 exhibited different single-molecule magnet behavior under zero-field conditions. The best fitting results showed that under zero DC field, the effective energy barriers (Ueff) and magnetic relaxation times (τ0) of complexes 1-4 are Ueff = 117.0 (2.1) K and τ0 = 6.07 × 10-7 s; Ueff = 83.91 (1.5) K and τ0 = 4.28 × 10-7 s; Ueff = 1.28 (0.2) K and τ0 = 0.73 s, and Ueff = 104.43 (13.3) K and τ0 = 8.25 × 10-8 s, respectively.

13.
Inorg Chem ; 61(49): 20169-20176, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36445983

RESUMO

Widespread concern has been raised over the synthesis of highly nucleated lanthanide clusters with special shapes and/or specific linkages. Construction of lanthanide clusters with specific shapes and/or linkages can be achieved by carefully regulating the hydrolysis of lanthanide metal ions and the resulting hydrolysis products. However, studies on the manipulation of lanthanide-ion hydrolysis to obtain giant lanthanide-oxo clusters have been few. In this study, we obtained a tetraicosa lanthanide cluster (3) by manipulating the hydrolysis of Dy(III) ions using an anion (OAc-). As far as we know, cluster 3 has the highest nucleation among all lanthanide-oxo clusters reported. In 3, two triangular Dy3O4 are oriented in opposite directions to form the central connecting axis Dy6(OH)8, which is in turn connected to six Dy3O4 that are oriented in different directions. Meanwhile, a sample of a chiral trinuclear dysprosium cluster (1) was obtained in a mixed CH3OH and CH3CN solvent and by replacing the anion in the reaction to Cl- ions. In this cluster, 1,3,4-thiadiazole-2,5-diamine (L2) is free on one side through π···π interactions and is parallel to the o-vanillin (L1)- ligand, thus resulting in a triangular arrangement. The arrangement of L2 affects the end group coordination in the cluster 1 structure through hydrogen bonding and induces the cluster to exhibit chirality. When the reaction solvent was changed to CH3OH, a sample of cluster 2, composed of two independent triangular Dy3 that have different end group arrangements, was obtained. Magnetic analysis showed that clusters 1 and 3 both exhibit distinctive single-molecule magnetic properties under zero-magnetic-field conditions. This study thus provides a method for the creation of chiral high-nucleation clusters from achiral ligands and potentially paves the way for the synthesis of high-nucleation lanthanide clusters with unique forms.


Assuntos
Elementos da Série dos Lantanídeos , Elementos da Série dos Lantanídeos/química , Ânions , Ligantes , Hidrólise , Íons
14.
iScience ; 25(11): 105285, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36304113

RESUMO

The metallic central magnetic axes in high-nucleation clusters with complex structural connections tend to be disorganized and cancel each other out. Therefore, high-nucleation clusters cannot easily exhibit single-molecule magnets (SMMs) behaviors. Herein, we select a triple-core building block (Dy3K2, 1) and use linked diamagnetic alkali metal to form an open, spherical, high-nucleation cluster Dy12Na6 (3) with SMM behavior. Furthermore, by changing the reaction conditions, Dy6K2 (2) formed by linking two Dy3 by K(I) is obtained. High-resolution electrospray mass spectrometry of clusters 1-3 effectively captures the building block Dy3, and clusters 1 and 3 and Dy3 have high stability even with the increase in ion source energy. To the best of our knowledge, this is the first time that an SMM based on a high-nucleation cluster has been obtained by connecting magnetic primitives via diamagnetic metal ions. Dy12K6 is currently the highest nuclear ns-4f heterometallic SMM.

15.
Dalton Trans ; 51(44): 17040-17049, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36305364

RESUMO

Although progress has been made in the design and synthesis of chiral lanthanide clusters with pleasing structural connections and special shapes, assembly rules that guide their directional construction are still lacking. We reacted R/S-mandelic acid hydrazide, 2,3-dihydroxybenzaldehyde and DyCl3·6H2O under solvothermal conditions to obtain two octanuclear chirality clusters R-1 and S-1, which are the enantiomers of each other. R/S-mandelic acid hydrazide and 2,3-dihydroxybenzaldehyde underwent an in situ reaction under "one-pot" conditions to generate a monohydrazone-type organic ligand R/S-mandelic acid hydrazide-2,3-dihydroxybenzaldehyde hydrazone (R/S-H2L). Four R/S-H2L ligands captured eight metal-centered Dy(III) ions and presented an annular arrangement, which assembled to form a pinwheel-shaped chiral cluster R/S-1. The benzene rings at the four vertices of R/S-1 can rotate freely as rotors. This is the first discovery of an annular growth mechanism during the self-assembly of lanthanide clusters. By changing the metal salt to Dy(NO3)3·6H2O, two twist-shaped hexanuclear clusters R-2 and S-2, which are the enantiomers of each other were obtained. Four R/S-H2L and two R/S-H3L ligands captured six metal-centered Dy(III) ions, respectively, and were assembled through a linear growth mechanism to form the twist-shaped chiral clusters R/S-2. This is the first time that a linear growth mechanism has been proposed for the directional construction of lanthanide clusters with specific shapes. Circular dichroism results showed that R/S-1 and R/S-2 were both chiral clusters and enantiomers of each other. Magnetic studies showed that both R/S-1 and R/S-2 exhibit obvious single-molecule magnet (SMM) behaviors under zero-field conditions. This work is the first to propose an annular/linear growth mechanism for the design and synthesis of lanthanide clusters and allows the directional construction of chiral lanthanide clusters with special shapes and structural connections.

16.
Inorg Chem ; 61(26): 10101-10107, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35709380

RESUMO

Lanthanoid metal ions have large ionic radii, complex coordination modes, and easy distortion of coordination spheres, but the design and synthesis of high-nucleation lanthanoid clusters with high stability in solution (especially aqueous solution) are challenging. Herein, a diacylhydrazone ligand (H2L1) with multidentate chelating coordination sites was used to react with Dy(OAc)3·4H2O under solvothermal conditions to obtain an example of a 34-nucleus crown-shaped dysprosium cluster [Dy34(L)8(µ2-OH)(µ3-OH)21(µ3-O)14(OAc)31(OCH3)2(H2O)15](OAc)3 (1). Structural analysis showed that the bisacylhydrazone ligand H2L1 with polydentate chelate coordination sites could rapidly capture DyIII ions, thereby forming 34-nucleus crown-shaped dysprosium cluster 1 following the out-to-in growth mechanism. Cluster 1 remained stable after immersion in solutions with different pH values (3-14) for 24 h. To the best of the authors' knowledge, high-nucleation lanthanoid clusters with excellent strong acid and base stability and water stability are very rare. Meanwhile, high-resolution electrospray mass spectrometry molecular ion peaks produced by cluster 1 were captured, which proved to be stable also in organic solvents. Magnetic research showed that cluster 1 exhibited frequency-dependent behavior. This work provides a new idea for designing and synthesizing high-nucleation lanthanoid clusters with high stability.

17.
Inorg Chem ; 61(16): 6094-6100, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35416660

RESUMO

A three-dimensional supermolecule structure is easily formed due to the diverse coordination modes of high-oxidation-state lanthanide metal ions. However, the design and construction of zero-dimensional (0 D) dish-shaped high-nuclearity lanthanide clusters are difficult. Herein, for the first time, we synthesized a series of the largest dish-shaped high-nuclearity lanthanide nanoclusters (1-4) by in situ tandem reactions under solvothermal one-pot conditions. The formation of 1 and 2 involved an in situ reaction of aldehydes and amines, while the condensation reactions between aldehydes occurred in 3 and 4. Based on the structural characteristics of the dish-shaped lanthanide clusters, we proposed two possible assembly mechanisms involving Dy1 → Dy7 → Dy13 → Dy19 (planar epitaxial growth mechanism) and Dy1 → Dy12 → Dy18 → Dy19 (planar internal growth mechanism).

18.
World J Gastrointest Oncol ; 14(1): 265-277, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35116116

RESUMO

BACKGROUND: Gastric cardia adenocarcinoma (GCA), which has been classified as type II adenocarcinoma of the esophagogastric junction in western countries, is of similar geographic distribution with esophageal squamous cell carcinoma in China, and even referred as "sister cancer" by Chinese oncologists. The molecular mechanism for GCA is largely unknown. Recent studies have shown that decreased expression of E-cadherin is associated with the invasion and metastasis of multiple cancers. However, the E-cadherin expression has not been well characterized in gastric cardia carcinogenesis and its effect on GCA prognosis. AIM: To characterize E-cadherin expression in normal gastric cardia mucosa, dysplasia and GCA tissues, and its influence on prognosis for GCA. METHODS: A total of 4561 patients with GCA were enrolled from our previously established GCA and esophageal cancer databases. The enrollment criteria included radical surgery for GCA, but without any radio- or chemo-therapy before operation. The GCA tissue from 4561 patients and matched adjacent normal epithelial tissue (n = 208) and dysplasia lesions (n = 156) were collected, and processed as tissue microarray for immunohistochemistry. The clinicopathological characteristics were retrieved from the medical records in hospital and follow-up was carried out through letter, telephone or home interview. E-cadherin protein expression was determined by two step immunohistochemistry. Kaplan-Meier and Cox regression analyses were used to correlate E-cadherin protein expression with survival of GCA patients. RESULTS: Of the 4561 GCA patients, there were 3607 males with a mean age of 61.6 ± 8.8 and 954 females with a mean age of 61.9 ± 8.6 years, respectively. With the lesions progressed from normal gastric cardia mucosa to dysplasia and GCA, the positive immunostaining rates for E-cadherin decreased significantly from 100% to 93.0% and 84.1%, respectively (R2 = 0.9948). Furthermore, E-cadherin positive immunostaining rate was significantly higher in patients at early stage (0 and I) than in those at late stage (II and III) (92.7% vs 83.7%, P = 0.001). E-cadherin positive expression rate was significantly associated with degree of differentiation (P = 0.001) and invasion depth (P < 0.001). Multivariate analysis showed that the GCA patients with positive E-cadherin immunostaining had better survival than those with negative (P = 0.026). It was noteworthy that E-cadherin positive expression rate was similar in patients with positive and negative lymph node metastasis. However, in patients with negative lymph node metastasis, those with positive expression of E-cadherin had better survival than those with negative expression (P = 0.036). Similarly, in patients with late stage GCA, those with positive expression of E-cadherin had better survival than those with negative expression (P = 0.011). CONCLUSION: E-cadherin expression may be involved in gastric cardia carcinogenesis and low expression of E-cadherin may be a promising early biomarker and overall survival predictor for GCA.

19.
J Cancer Educ ; 37(4): 994-999, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33137207

RESUMO

The free generalized endoscopic screening for diagnosis of early esophageal cancer and precancerous lesion could not be satisfactorily implemented in China. At present, the decision to accept endoscopic screening at their own expense may largely depend on the public awareness. This study was aimed to investigate the awareness and other influencing factors associated with the accompanying children of esophageal cancer patients after their hospitalization. In this cross-sectional study, from April to June 2016, 233 children of accompanying patients, who were admitted within the last 1 year due to esophageal cancer in three affiliated hospitals of Zhengzhou University and Anyang Tumor Hospital, were enrolled. In addition, telephone surveys were conducted to investigate their awareness about endoscopic screening. One child was corresponded to an esophageal cancer patient. About half (47.6%, 111/233) of the children were unaware that endoscopic screening could detect early esophageal cancer and precancerous lesion. There was no significant difference in their awareness rates between hospitals with different administration levels. Besides, the males who had a lower family income and lower education level showed a poor awareness rate (P < 0.05). The overall awareness rate among the accompanying children of patients on endoscopic screening was rather low in Henan province (China). Hence, the health education and awareness on the importance of endoscopic screening for early detection of esophageal cancer should be promoted among children accompanying the patients. More attention should be focused towards the subject group, particularly among those male children with lower educational level and family income.


Assuntos
Neoplasias Esofágicas , Lesões Pré-Cancerosas , Criança , China , Estudos Transversais , Detecção Precoce de Câncer , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/patologia , Humanos , Masculino , Programas de Rastreamento , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/patologia
20.
Dalton Trans ; 51(1): 197-202, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34878449

RESUMO

Specially shaped high-nuclear lanthanide cluster assembly has attracted widespread attention, but the study of their self-assembly mechanism is still stagnant. Herein, we used a polydentate chelating bis-acylhydrazone ligand to construct a rare 16-nuclear dysprosium cluster 1 with a brucite-like structure. The capture agents, pivalic acid and di(pyridin-2-yl)methanone, were added into the reaction system, and the hexanuclear dysprosium cluster 2 and heptanuclear dysprosium cluster 3 were obtained, respectively. Clusters 2 and 3 support the out-to-in growth mechanism as key evidence. To the best of our knowledge, this study is the first to use truncation reaction to decipher the formation mechanism of high-nuclear lanthanide clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...