Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Diagn Microbiol Infect Dis ; 110(1): 116420, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38954860

RESUMO

This study evaluates the non-invasive diagnosis of Invasive Aspergillosis Pneumonia (IPA) in mechanically ventilated patients by measuring galactomannan (GM) in exhaled breath condensate (EBC). Utilizing a rat model and a novel EBC collection device, we compared GM levels in bronchoalveolar lavage fluid (BALF) and EBC, supplemented by cytokine profiling. Analysis of 75 patients confirmed the device's efficacy, with EBC-GM and BALF-GM showing high diagnostic accuracy (AUC = 0.88). The threshold of 0.235 ng/ml for EBC-GM achieved 92.8 % sensitivity and 66.7 % specificity, with a strong correlation (r = 0.707, P < 0.001) with BALF-GM. This approach offers a safe, effective alternative to invasive diagnostics, enhancing precision with IL-6 and TNF-α measurements. The number registered on clinicaltrails.gov is NCT06333379.

2.
Front Immunol ; 15: 1424197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983866

RESUMO

Background: Lung squamous cell carcinoma (LUSC) ranks among the carcinomas with the highest incidence and dismal survival rates, suffering from a lack of effective therapeutic strategies. Consequently, biomarkers facilitating early diagnosis of LUSC could significantly enhance patient survival. This study aims to identify novel biomarkers for LUSC. Methods: Utilizing the TCGA, GTEx, and CGGA databases, we focused on the gene encoding Family with Sequence Similarity 20, Member A (FAM20A) across various cancers. We then corroborated these bioinformatic predictions with clinical samples. A range of analytical tools, including Kaplan-Meier, MethSurv database, Wilcoxon rank-sum, Kruskal-Wallis tests, Gene Set Enrichment Analysis, and TIMER database, were employed to assess the diagnostic and prognostic value of FAM20A in LUSC. These tools also helped evaluate immune cell infiltration, immune checkpoint genes, DNA repair-related genes, DNA methylation, and tumor-related pathways. Results: FAM20A expression was found to be significantly reduced in LUSC, correlating with lower survival rates. It exhibited a negative correlation with key proteins in DNA repair signaling pathways, potentially contributing to LUSC's radiotherapy resistance. Additionally, FAM20A showed a positive correlation with immune checkpoints like CTLA-4, indicating potential heightened sensitivity to immunotherapies targeting these checkpoints. Conclusion: FAM20A emerges as a promising diagnostic and prognostic biomarker for LUSC, offering potential clinical applications.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Biomarcadores Tumorais/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/imunologia , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Prognóstico , Regulação Neoplásica da Expressão Gênica , Biologia Computacional/métodos , Bases de Dados Genéticas , Proteínas que Contêm Bromodomínio , Proteínas do Tecido Nervoso , Fatores de Transcrição , Antígenos Nucleares
3.
Front Oncol ; 14: 1384928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947884

RESUMO

Sirtuins are pivotal in orchestrating numerous cellular pathways, critically influencing cell metabolism, DNA repair, aging processes, and oxidative stress. In recent years, the involvement of sirtuins in tumor biology has garnered substantial attention, with a growing body of evidence underscoring their regulatory roles in various aberrant cellular processes within tumor environments. This article delves into the sirtuin family and its biological functions, shedding light on their dual roles-either as promoters or inhibitors-in various cancers including oral, breast, hepatocellular, lung, and gastric cancers. It further explores potential anti-tumor agents targeting sirtuins, unraveling the complex interplay between sirtuins, miRNAs, and chemotherapeutic drugs. The dual roles of sirtuins in cancer biology reflect the complexity of targeting these enzymes but also highlight the immense therapeutic potential. These advancements hold significant promise for enhancing clinical outcomes, marking a pivotal step forward in the ongoing battle against cancer.

4.
Front Public Health ; 12: 1387247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813405

RESUMO

Purpose: This research investigated the impact of the COVID-19 pandemic on the mental well-being and sleep quality of students in higher vocational colleges in Sichuan, China, identifying key factors influencing their psychological health during this period. Methods: Between January and February 2022, a comprehensive survey was conducted among students from several higher vocational colleges in Sichuan, utilizing a randomized selection approach to involve 3,300 participants. Data were collected through direct interviews executed by skilled interviewers. Results: Out of 3,049 valid responses, a significant number reported experiencing symptoms of poor mental health, anxiety, depression, and insomnia, with prevalence rates of 21.2%, 9.7%, 14.1%, and 81.9%, respectively. Factors contributing positively to mental health and sleep included a higher family economic status, reduced stress from the pandemic, and decreased online activity. Conversely, lack of physical activity post-pandemic, disruptions to education and employment, and deteriorating relationships emerged as negative influencers. Interestingly, a lack of pre-pandemic mental health knowledge acted as a protective factor against insomnia. Conclusion: The ongoing management of COVID-19 has notably influenced the psychological and sleep health of vocational college students, driven by economic, emotional, lifestyle, and educational factors. The findings underscore the necessity for targeted interventions to address these challenges effectively.


Assuntos
COVID-19 , Saúde Mental , Distúrbios do Início e da Manutenção do Sono , Qualidade do Sono , Estudantes , Humanos , COVID-19/epidemiologia , COVID-19/psicologia , China/epidemiologia , Masculino , Estudantes/psicologia , Feminino , Universidades , Adulto Jovem , Adulto , Inquéritos e Questionários , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Depressão/epidemiologia , Ansiedade/epidemiologia , Adolescente , SARS-CoV-2 , Prevalência
5.
Front Immunol ; 15: 1385022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694507

RESUMO

Liver failure represents a critical medical condition with a traditionally grim prognosis, where treatment options have been notably limited. Historically, liver transplantation has stood as the sole definitive cure, yet the stark disparity between the limited availability of liver donations and the high demand for such organs has significantly hampered its feasibility. This discrepancy has necessitated the exploration of hepatocyte transplantation as a temporary, supportive intervention. In light of this, our review delves into the burgeoning field of hepatocyte transplantation, with a focus on the latest advancements in maintaining hepatocyte function, co-microencapsulation techniques, xenogeneic hepatocyte transplantation, and the selection of materials for microencapsulation. Our examination of hepatocyte microencapsulation research highlights that, to date, most studies have been conducted in vitro or using liver failure mouse models, with a notable paucity of experiments on larger mammals. The functionality of microencapsulated hepatocytes is primarily inferred through indirect measures such as urea and albumin production and the rate of ammonia clearance. Furthermore, research on the mechanisms underlying hepatocyte co-microencapsulation remains limited, and the practicality of xenogeneic hepatocyte transplantation requires further validation. The potential of hepatocyte microencapsulation extends beyond the current scope of application, suggesting a promising horizon for liver failure treatment modalities. Innovations in encapsulation materials and techniques aim to enhance cell viability and function, indicating a need for comprehensive studies that bridge the gap between small-scale laboratory success and clinical applicability. Moreover, the integration of bioengineering and regenerative medicine offers novel pathways to refine hepatocyte transplantation, potentially overcoming the challenges of immune rejection and ensuring the long-term functionality of transplanted cells. In conclusion, while hepatocyte microencapsulation and transplantation herald a new era in liver failure therapy, significant strides must be made to translate these experimental approaches into viable clinical solutions. Future research should aim to expand the experimental models to include larger mammals, thereby providing a clearer understanding of the clinical potential of these therapies. Additionally, a deeper exploration into the mechanisms of cell survival and function within microcapsules, alongside the development of innovative encapsulation materials, will be critical in advancing the field and offering new hope to patients with liver failure.


Assuntos
Encapsulamento de Células , Sobrevivência Celular , Hepatócitos , Animais , Humanos , Encapsulamento de Células/métodos , Hepatócitos/transplante , Hepatócitos/citologia , Falência Hepática/terapia , Transplante Heterólogo
6.
Front Immunol ; 15: 1386382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585270

RESUMO

Xenotransplantation is emerging as a vital solution to the critical shortage of organs available for transplantation, significantly propelled by advancements in genetic engineering and the development of sophisticated immunosuppressive treatments. Specifically, the transplantation of kidneys from genetically engineered pigs into human patients has made significant progress, offering a potential clinical solution to the shortage of human kidney supply. Recent trials involving the transplantation of these modified porcine kidneys into deceased human bodies have underscored the practicality of this approach, advancing the field towards potential clinical applications. However, numerous challenges remain, especially in the domains of identifying suitable donor-recipient matches and formulating effective immunosuppressive protocols crucial for transplant success. Critical to advancing xenotransplantation into clinical settings are the nuanced considerations of anesthesia and surgical practices required for these complex procedures. The precise genetic modification of porcine kidneys marks a significant leap in addressing the biological and immunological hurdles that have traditionally challenged xenotransplantation. Yet, the success of these transplants hinges on the process of meticulously matching these organs with human recipients, which demands thorough understanding of immunological compatibility, the risk of organ rejection, and the prevention of zoonotic disease transmission. In parallel, the development and optimization of immunosuppressive protocols are imperative to mitigate rejection risks while minimizing side effects, necessitating innovative approaches in both pharmacology and clinical practices. Furthermore, the post-operative care of recipients, encompassing vigilant monitoring for signs of organ rejection, infectious disease surveillance, and psychological support, is crucial for ensuring post-transplant life quality. This comprehensive care highlights the importance of a multidisciplinary approach involving transplant surgeons, anesthesiologists, immunologists, infectiologists and psychiatrists. The integration of anesthesia and surgical expertise is particularly vital, ensuring the best possible outcomes of those patients undergoing these novel transplants, through safe procedural practices. As xenotransplantation moving closer to clinical reality, establishing consensus guidelines on various aspects, including donor-recipient selection, immunosuppression, as well as surgical and anesthetic management of these transplants, is essential. Addressing these challenges through rigorous research and collective collaboration will be the key, not only to navigate the ethical, medical, and logistical complexities of introducing kidney xenotransplantation into mainstream clinical practice, but also itself marks a new era in organ transplantation.


Assuntos
Anestesia , Transplante de Órgãos , Animais , Humanos , Suínos , Transplante Heterólogo/efeitos adversos , Zoonoses , Rim , Imunossupressores
7.
Biomed Pharmacother ; 174: 116585, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615611

RESUMO

Emerging research into metabolic dysfunction-associated steatotic liver disease (MASLD) up until January 2024 has highlighted the critical role of cuproptosis, a unique cell death mechanism triggered by copper overload, in the disease's development. This connection offers new insights into MASLD's complex pathogenesis, pointing to copper accumulation as a key factor that disrupts lipid metabolism and insulin sensitivity. The identification of cuproptosis as a significant contributor to MASLD underscores the potential for targeting copper-mediated pathways for novel therapeutic approaches. This promising avenue suggests that managing copper levels could mitigate MASLD progression, offering a fresh perspective on treatment strategies. Further investigations into how cuproptosis influences MASLD are essential for unraveling the detailed mechanisms at play and for identifying effective interventions. The focus on copper's role in liver health opens up the possibility of developing targeted therapies that address the underlying causes of MASLD, moving beyond symptomatic treatment to tackle the root of the problem. The exploration of cuproptosis in the context of MASLD exemplifies the importance of understanding metal homeostasis in metabolic diseases and represents a significant step forward in the quest for more effective treatments. This research direction lights path for innovative MASLD management and reversal.


Assuntos
Apoptose , Cobre , Fígado Gorduroso , Animais , Humanos , Cobre/metabolismo , Fígado Gorduroso/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Doenças Metabólicas/metabolismo
8.
Mol Breed ; 44(3): 24, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38495646

RESUMO

Sorghum is an important food crop commonly used for brewing, feed, and bioenergy. Certain genotypes of sorghum contain high concentrations of condensed tannins in seeds, which are beneficial, such as protecting grains from herbivore bird pests, but also impair grain quality and digestibility. Previously, we identified Tannin1 and Tannin2, each with three recessive causal alleles, regulate tannin absence in sorghum. In this study, via characterizing 421 sorghum accessions, we further identified three novel recessive alleles from these two genes. The tan1-d allele contains a 12-bp deletion at position 659 nt and the tan1-e allele contains a 10-bp deletion at position 771 nt in Tannin1. The tan2-d allele contains a C-to-T transition, which results in a premature stop codon before the bHLH domain in Tannin2, and was predominantly selected in China. We further developed KASP assays targeting these identified recessive alleles to efficiently genotype large populations. These studies provide new insights in sorghum domestication and convenient tools for breeding programs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01463-y.

9.
Sci Adv ; 10(10): eade6900, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446877

RESUMO

The accumulation of self-renewed polarized microglia in the penumbra is a critical neuroinflammatory process after ischemic stroke, leading to secondary demyelination and neuronal loss. Although known to regulate tumor cell proliferation and neuroinflammation, HDAC3's role in microgliosis and microglial polarization remains unclear. We demonstrated that microglial HDAC3 knockout (HDAC3-miKO) ameliorated poststroke long-term functional and histological outcomes. RNA-seq analysis revealed mitosis as the primary process affected in HDAC3-deficent microglia following stroke. Notably, HDAC3-miKO specifically inhibited proliferation of proinflammatory microglia without affecting anti-inflammatory microglia, preventing microglial transition to a proinflammatory state. Moreover, ATAC-seq showed that HDAC3-miKO induced closing of accessible regions enriched with PU.1 motifs. Overexpressing microglial PU.1 via an AAV approach reversed HDAC3-miKO-induced proliferation inhibition and protective effects on ischemic stroke, indicating PU.1 as a downstream molecule that mediates HDAC3's effects on stroke. These findings uncovered that HDAC3/PU.1 axis, which mediated differential proliferation-related reprogramming in different microglia populations, drove poststroke inflammatory state transition, and contributed to pathophysiology of ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Microglia , Acidente Vascular Cerebral/genética , Proliferação de Células , Sementes
10.
Front Plant Sci ; 14: 1261323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965005

RESUMO

Grain sorghum is an exceptional source of dietary nutrition with outstanding economic values. Breeding of grain sorghum can be slowed down by the occurrence of genotype × environment interactions (GEI) causing biased estimation of yield performance in multi-environments and therefore complicates direct phenotypic selection of superior genotypes. Multi-environment trials by randomized complete block design with three replications were performed on 13 newly developed grain sorghum varieties at seven test locations across China for two years. Additive main effects and multiplicative interaction (AMMI) and genotype + genotype × environment (GGE) biplot models were adopted to uncover GEI patterns and effectively identify high-yielding genotypes with stable performance across environments. Yield (YLD), plant height (PH), days to maturity (DTM), thousand seed weight (TSW), and panicle length (PL) were measured. Statistical analysis showed that target traits were influenced by significant GEI effects (p < 0.001), that broad-sense heritability estimates for these traits varied from 0.40 to 0.94 within the medium to high range, that AMMI and GGE biplot models captured more than 66.3% of total variance suggesting sufficient applicability of both analytic models, and that two genotypes, G3 (Liaoza No.52) and G10 (Jinza 110), were identified as the superior varieties while one genotype, G11 (Jinza 111), was the locally adapted variety. G3 was the most stable variety with highest yielding potential and G10 was second to G3 in average yield and stability whereas G11 had best adaptation only in one test location. We recommend G3 and G10 for the production in Shenyang, Chaoyang, Jinzhou, Jinzhong, Yulin, and Pingliang, while G11 for Yili.

11.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003509

RESUMO

Foxtail millet (Setaria italica (L.) P. Beauv) is an important food and forage crop that is well adapted to nutrient-poor soils. However, our understanding of how different LN-tolerant foxtail millet varieties adapt to long-term low nitrogen (LN) stress at the physiological and molecular levels remains limited. In this study, two foxtail millet varieties with contrasting LN tolerance properties were investigated through analyses of physiological parameters and transcriptomics. The physiological results indicate that JG20 (high tolerance to LN) exhibited superior biomass accumulation both in its shoots and roots, and higher nitrogen content, soluble sugar concentration, soluble protein concentration, zeatin concentration in shoot, and lower soluble sugar and soluble protein concentration in its roots compared to JG22 (sensitive to LN) under LN, this indicated that the LN-tolerant foxtail millet variety can allocate more functional substance to its shoots to sustain aboveground growth and maintain high root activity by utilizing low soluble sugar and protein under LN conditions. In the transcriptomics analysis, JG20 exhibited a greater number of differentially expressed genes (DEGs) compared to JG22 in both its shoots and roots in response to LN stress. These LN-responsive genes were enriched in glycolysis metabolism, photosynthesis, hormone metabolism, and nitrogen metabolism. Furthermore, in the shoots, the glutamine synthetase gene SiGS5, chlorophyll apoprotein of photosystem II gene SiPsbQ, ATP synthase subunit gene Sib, zeatin synthesis genes SiAHP1, and aldose 1-epimerase gene SiAEP, and, in the roots, the high-affinity nitrate transporter genes SiNRT2.3, SiNRT2.4, glutamate synthase gene SiGOGAT2, fructose-bisphosphate aldolase gene SiFBA5, were important genes involved in the LN tolerance of the foxtail millet variety. Hence, our study implies that the identified genes and metabolic pathways contribute valuable insights into the mechanisms underlying LN tolerance in foxtail millet.


Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Nitrogênio/metabolismo , Zeatina/metabolismo , Açúcares/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
12.
Phytomedicine ; 121: 155100, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801892

RESUMO

BACKGROUND: The liver is a well-known player in the metabolism and removal of drugs. Drug metabolizing enzymes in the liver detoxify drugs and xenobiotics, ultimately leading to the acquisition of homeostasis. However, liver toxicity and cell damage are not only related to the nature and dosage of a particular drug but are also influenced by other factors such as aging, immune status, environmental contaminants, microbial metabolites, gender, obesity, and expression of individual genes Furthermore, factors such as drugs, alcohol, and environmental contaminants could induce oxidative stress, thereby impairing the regenerative potential of the liver and causing several diseases. Persons suffering from other ailments and those with comorbidities are found to be more prone to drug-induced toxicities. Moreover, drug composition and drug-drug interactions could further aggravate the risk of drug-induced hepatotoxicity. A plethora of mechanisms are responsible for initiating liver cell damage and further aggravating liver cell injury, followed by impairment of homeostasis, ultimately leading to the generation of reactive oxygen species, immune-suppression, and oxidative stress. OBJECTIVE: To summarize the potential of phytochemicals and natural bioactive compounds to treat hepatotoxicity and other liver diseases. STUDY DESIGN: A deductive qualitative content analysis approach was employed to assess the overall outcomes of the research and review articles pertaining to hepatoprotection induced by natural drugs, along with analysis of the interventions. METHODS: An extensive literature search of bibliographic databases, including Web of Science, PUBMED, SCOPUS, GOOGLE SCHOLAR, etc., was carried out to understand the role of hepatoprotective effects of natural drugs. RESULTS: Bioactive natural products, including curcumin, resveratrol, etc., have been seen as neutralizing agents against the side effects induced by the drugs. Moreover, these natural products are dietary and are readily available; thus, could be supplemented along with drugs to reduce toxicity to cells. Probiotics, prebiotics, and synbiotics have shown promise of improving overall liver functioning, and these should be evaluated more extensively for their hepatoprotective potential. Therefore, selecting an appropriate natural product or a bioactive compound that is free of toxicity and offers a reliable solution for drug-induced liver toxicity is quintessential. CONCLUSIONS: The current review highlights the role of natural bioactive products in neutralizing drug-induced hepatotoxicity. Efforts have been made to delineate the possible underlying mechanism associated with the neutralization process.


Assuntos
Produtos Biológicos , Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Humanos , Hepatopatias/tratamento farmacológico , Antioxidantes/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Produtos Biológicos/farmacologia
13.
Perioper Med (Lond) ; 12(1): 23, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308905

RESUMO

BACKGROUND: Elevated intraocular pressure (IOP) and optic nerve edema occurring during prone surgeries may cause ocular and optic nerve ischaemia injury. We hypothesized that a liberal fluid protocol might further increase IOP and optic nerve sheath diameter (ONSD) than a restrictive fluid protocol for patients in the prone position. METHODS: A single-centre, prospective and randomized trial was conducted. Patients were randomly allocated into 2 groups: the liberal fluid infusion group, in which repeated bolus doses of Ringer's lactate solution were given to maintain pulse pressure variation (PPV) within 6~9%, and the restrictive fluid infusion group, where PPV was maintained within 13-16%. IOP and ONSD were measured in both eyes at 10min after the anaesthesia induction in the supine position, 10min after the prone position placement, and 1h and 2h since the prone position was placed, at the conclusion of surgery, and returned to the supine position. RESULTS: A total of 97 patients were recruited and completed the study. IOP increased significantly from 12±3mmHg in the supine position to 31±5 mmHg (p<0.001) at the end of surgery in the liberal fluid infusion group and from 12±2 to 28±4 mmHg (p<0.001) in the restrictive fluid infusion group. There was a statistically significant difference in the change of IOP over time between the two groups (p=0.019). ONSD increased significantly from 5.3±0.3mm in the supine position to 5.5±0.3mm (p<0.001) at the end of surgery in both groups (both p<0.001). There was no statistically significant difference in the change of ONSD over time between the two groups (p>0.05). CONCLUSIONS: Compared to the restrictive fluid protocol, the liberal fluid protocol increased IOP but not ONSD in patients undergoing prone spine surgery. TRIAL REGISTRATION: The study was registered in ClinicalTrials.gov ( https://clinicaltrials.gov ) prior to patient enrollment, ID: NCT03890510, on March 26, 2019. The principal investigator was Xiao-Yu Yang.

14.
Ren Fail ; 45(1): 2228419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37381833

RESUMO

BACKGROUND: The kidney transplant recipients (KTRs) were diagnosed with Chronic Kidney Disease after transplantation (CKD-T). CKD-T can be affected by the microbial composition and metabolites. The present study integrates the analysis of gut microbiome and metabolites to further identify the characteristics of CKD-T. METHODS: We collected 100 fecal samples of KTRs and divided them into two groups according to the stage progression of CKD-T. Among them, 55 samples were analyzed by Hiseq sequencing, and 100 samples were used for non-targeted metabolomics analysis. The gut microbiome and metabolomics of KTRs were comprehensively characterized. RESULTS: As well as significant differences in gut microbiome diversity between the CKD G1-2T group and CKD G3T group. Eight flora including Akkermansia were found to be enriched in CKD G3T group. As compared with CKD G1-2T group, the relative abundance of some amino acid metabolism, glycerophospholipid metabolism, amino acid biosynthesis, carbohydrate metabolism and purine metabolism in CKD G3T group were differential expressed significantly. In addition, fecal metabolome analysis indicated that CKD G3T group had a unique metabolite distribution characteristic. Two differentially expressed metabolites, N-acetylornithine and 5-deoxy-5'-(Methylthio) Adenosine, were highly correlated with serum creatinine, eGFR and cystatin C. The enrichment of gut microbial function in CKD-T is correlated with the expression of gut metabolites. CONCLUSION: Gut microbiome and metabolites in the progression of CKD-T display some unique distribution and expression characteristics. The composition of the gut microbiome and their metabolites appears to be different between patients with CKD G3T and those with CKD G1-2T.


Assuntos
Microbioma Gastrointestinal , Transplante de Rim , Humanos , Metaboloma , Aminoácidos , Rim
15.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108376

RESUMO

Early maturity is an important agronomic trait in most crops, because it can solve the problem of planting in stubble for multiple cropping as well as make full use of light and temperature resources in alpine regions, thereby avoiding damage from low temperatures in the early growth period and early frost damage in the late growth period to improve crop yield and quality. The expression of genes that determine flowering affects flowering time, which directly affects crop maturity and indirectly affects crop yield and quality. Therefore, it is important to analyze the regulatory network of flowering for the cultivation of early-maturing varieties. Foxtail millet (Setaria italica) is a reserve crop for future extreme weather and is also a model crop for functional gene research in C4 crops. However, there are few reports on the molecular mechanism regulating flowering in foxtail millet. A putative candidate gene, SiNF-YC2, was isolated based on quantitative trait loci (QTL) mapping analysis. Bioinformatics analysis showed that SiNF-YC2 has a conserved HAP5 domain, which indicates that it is a member of the NF-YC transcription factor family. The promoter of SiNF-YC2 contains light-response-, hormone-, and stress-resistance-related elements. The expression of SiNF-YC2 was sensitive to the photoperiod and was related to the regulation of biological rhythm. Expression also varied in different tissues and in response to drought and salt stress. In a yeast two-hybrid assay, SiNF-YC2 interacted with SiCO in the nucleus. Functional analysis suggested that SiNF-YC2 promotes flowering and improves resistance to salt stress.


Assuntos
Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Tolerância ao Sal/genética , Locos de Características Quantitativas , Fenótipo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Pest Manag Sci ; 79(5): 1885-1896, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36700288

RESUMO

BACKGROUND: In order to design compounds with fresh molecular skeleton to break through the limitation of available agrochemicals, a series of 36 novel selenenyl sulfide compounds were chemically synthesized, and their biological activities were fully evaluated against tobacco mosaic virus (TMV), 14 plant pathogenic fungi, three insect species and plant acetohydroxyacid synthase (AHAS). RESULTS: All the target compounds were characterized by proton nuclear magnetic resonance (1 H-NMR), carbon-13 (13 C)-NMR, selenium-77 (77 Se)-NMR, and high-resolution mass spectrometry (HRMS). The crystal structure of 10j indicated that the Se-S bond was successfully constructed. Compounds 10d, 10h, 10s, 10u, 10aa, 10ac, 10ae, 10ag, and 10ai exhibited 40%, 43%, 39%, 41%, 47%, 46%, 47%, 42%, and 39% anti-TMV activities at 500 mg L-1 , better than that of ribavirin. The median effective concentration (EC50 ) against Sclerotinia sclerotiorum of 10ac was 6.69 mg L-1 and EC50 values against Physalospora piricola and Pyricularia grisea of 10z were 12.25 mg L-1 and 15.27 mg L-1 , respectively, superior to the corresponding values of chlorothalonil. Compounds 10c and 10v demonstrated 100% larvicidal activity against Culex pipiens pallens at 5 mg L-1 , while 10a displayed 100% insecticidal activity against Mythimna separata at 200 mg L-1 . Compounds 10c, 10j, and 10o showed > 60% inhibitions against plant AHAS at 10 µmol L-1 . From the quantum calculation, highest occupied molecular orbital (HOMO) was considered as a factor that affects the anti-TMV activity. CONCLUSION: The preliminary results suggested that more efforts should be devoted to exploring the selenenyl sulfides for the discovery of new leads of antiviral agent, fungicide, insecticide or AHAS inhibitors as potential agrochemicals for crop protection. © 2023 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Inseticidas , Mariposas , Vírus do Mosaico do Tabaco , Animais , Relação Estrutura-Atividade , Fungicidas Industriais/química , Antivirais , Inseticidas/química , Sulfetos/farmacologia , Estrutura Molecular , Desenho de Fármacos
17.
Xenotransplantation ; 30(1): e12787, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454040

RESUMO

OBJECTIVE: Islet allotransplantation has demonstrated improved clinical outcomes using the hepatic portal vein as the standard infusion method. However, the current implantation site is not ideal due to the short-term thrombotic and long-term immune destruction. Meanwhile, the shortage of human organ donors further limits its application. To find a new strategy, we tested a new polymer combination for islet encapsulation and transplantation. Meanwhile, we explored a new site for xenogeneic islet transplantation in mice. METHOD: We synthesized a hydrogel combining alginate plus poly-ethylene-imine (Alg/PEI) for the encapsulation of rat, neonatal porcine, and human islets. Transplantation was performed into the retroperitoneal retro-colic space of diabetic mice. Control mice received free islets under the kidney capsule or encapsulated islets into the peritoneum. The biochemical indexes were measured, and the transplanted islets were harvested for immunohistochemical staining of insulin and glucagon. RESULTS: Mice receiving encapsulated rat, porcine and human islets transplanted into the retroperitoneal space maintained normoglycemia for a median of 275, 145.5, and 146 days, respectively. In contrast, encapsulated xenogeneic islets transplanted into the peritoneum, maintained function for a median of 61, 95.5, and 82 days, respectively. Meanwhile, xenogeneic islets transplanted free into the kidney capsule lost their function within 3 days after transplantation. Immunohistochemical staining of encapsulated rat, porcine and human islets, retrieved from the retroperitoneal space, allowed to distinguish morphological normal insulin expressing ß- and glucagon expressing α-cells at 70, 60, and 100 days post-transplant, respectively. CONCLUSION: Transplantation of Alg/PEI encapsulated xenogeneic islets into the retroperitoneal space provides a valuable new implantation strategy for the treatment of type 1 diabetes.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Ratos , Camundongos , Suínos , Humanos , Animais , Ilhotas Pancreáticas/cirurgia , Transplante das Ilhotas Pancreáticas/métodos , Transplante Heterólogo/métodos , Diabetes Mellitus Experimental/cirurgia , Espaço Retroperitoneal , Glucagon , Insulina
18.
Front Physiol ; 14: 1293402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264334

RESUMO

In this comprehensive meta-analysis, our objective was to evaluate the diagnostic utility of graft-derived cell-free DNA (GcfDNA) in kidney allograft rejection and explore associated factors. We conducted a thorough search of PubMed, Embase, and the Cochrane Library databases, spanning from their inception to September 2022. Statistical analysis was executed utilizing Stata 15, Meta-DiSc 1.4, and Review Manager 5.4 software. The combined pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and the area under the summary receiver operating characteristics (SROC) curve from the synthesis of findings across ten studies were as follows: 0.75 (0.67-0.81), 0.78 (0.72-0.83), 3.36 (2.89-4.35), 0.32 (0.24-0.44), 8.77 (4.34-17.74), and 0.83 (0.80-0.86), respectively. Among the ten studies primarily focused on GcfDNA's diagnostic potential for antibody-mediated rejection (ABMR), the optimal cut-off threshold demonstrated substantial diagnostic efficacy, with pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, DOR, and area under the summary receiver operating characteristics curve values of 0.83 (0.74-0.89), 0.75 (0.70-0.80), 3.37 (2.64-4.30), 0.23 (0.15-0.36), 14.65 (7.94-27.03), and 0.85 (0.82-0.88), respectively. These results underscore the high diagnostic accuracy of GcfDNA in detecting rejection. Furthermore, the optimal cut-off threshold proves effective in diagnosing ABMR, while a 1% threshold remains a robust diagnostic criterion for rejection. Notably, for ABMR diagnosis, droplet digital PCR digital droplet polymerase chain reaction emerges as a superior method in terms of accuracy when compared to other techniques. Nonetheless, further research is warranted to substantiate these findings.

19.
Front Plant Sci ; 13: 969604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204051

RESUMO

Foxtail millet (Setaria italica) is a versatile grain and fodder crop grown in arid and semi-arid regions. It is an especially important crop for combating malnutrition in certain poverty-stricken areas of the world. Photoperiod sensitivity is a major constraint to the distribution and utilization of foxtail millet germplasm resources. Foxtail millet may be suitable as a model species for studying the photoperiod sensitivity of C4 crops. However, the genetic basis of the photoperiod response of foxtail millet remains poorly studied. To detect the genetic basis of photoperiod sensitivity-related traits, a recombinant inbred line (RIL) population consisting of 313 lines derived from a cross between the spring-sown cultivar "Longgu 3" and the summer-sown cultivar "Canggu 3" was established. The RIL population was genotyped using whole-genome re-sequencing and was phenotyped in four environments. A high-density genetic linkage map was constructed with an average distance between adjacent markers of 0.69 cM. A total of 21 quantitative trait loci (QTLs) were identified by composite interval mapping, and 116 candidate genes were predicted according to gene annotations and variations between parents, among which three genes were considered important candidate genes by the integration and overall consideration of the results from gene annotation, SNP and indel analysis, cis-element analysis, and the expression pattern of different genes in different varieties, which have different photoperiod sensitivities. A putative candidate gene, SiCOL5, was isolated based on QTL mapping analysis. The expression of SiCOL5 was sensitive to photoperiod and was regulated by biological rhythm-related genes. Function analysis suggested that SiCOL5 positively regulated flowering time. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that SiCOL5 was capable of interacting with SiNF-YA1 in the nucleus.

20.
Eur J Anaesthesiol ; 39(9): 758-765, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35919026

RESUMO

BACKGROUND: Identifying the interscalene brachial plexus can be challenging during ultrasound-guided interscalene block. OBJECTIVE: We hypothesised that an algorithm based on deep learning could locate the interscalene brachial plexus in ultrasound images better than a nonexpert anaesthesiologist, thus possessing the potential to aid anaesthesiologists. DESIGN: Observational study. SETTING: A tertiary hospital in Shanghai, China. PATIENTS: Patients undergoing elective surgery. INTERVENTIONS: Ultrasound images at the interscalene level were collected from patients. Two independent image datasets were prepared to train and evaluate the deep learning model. Three senior anaesthesiologists who were experts in regional anaesthesia annotated the images. A deep convolutional neural network was developed, trained and optimised to locate the interscalene brachial plexus in the ultrasound images. Expert annotations on the datasets were regarded as an accurate baseline (ground truth). The test dataset was also annotated by five nonexpert anaesthesiologists. MAIN OUTCOME MEASURES: The primary outcome of the research was the distance between the lateral midpoints of the nerve sheath contours of the model predictions and ground truth. RESULTS: The data set was obtained from 1126 patients. The training dataset comprised 11 392 images from 1076 patients. The test dataset constituted 100 images from 50 patients. In the test dataset, the median [IQR] distance between the lateral midpoints of the nerve sheath contours of the model predictions and ground truth was 0.8 [0.4 to 2.9] mm: this was significantly shorter than that between nonexpert predictions and ground truth (3.4 mm [2.1 to 4.5] mm; P < 0.001). CONCLUSION: The proposed model was able to locate the interscalene brachial plexus in ultrasound images more accurately than nonexperts. TRIAL REGISTRATION: ClinicalTrials.gov (https://clinicaltrials.gov) identifier: NCT04183972.


Assuntos
Bloqueio do Plexo Braquial , Plexo Braquial , Anestésicos Locais , Inteligência Artificial , Plexo Braquial/diagnóstico por imagem , Bloqueio do Plexo Braquial/métodos , China , Humanos , Redes Neurais de Computação , Ultrassonografia de Intervenção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...