Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0305231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38917128

RESUMO

The new development pattern has identified two key avenues for the sustained advancement of high-quality agricultural and rural development: digitalisation and low-carbon development. The measurement of the digital economy and the agricultural carbon emission performance, and their spatial and temporal heterogeneity, is a crucial step in promoting the spatial coordination and sustainable development of digitalisation and low-carbon agriculture. This paper employs the entropy value method, SBM model, and coupling coordination degree model to investigate the coupling coordination measurement and spatial-temporal heterogeneity of the performance of the digital economy and agricultural carbon emissions. The data used are provincial panel data from 2013 to 2021. The simulation results demonstrate that, between 2013 and 2021, the digital economy of all provinces exhibited varying degrees of growth, yet the development of the digital economy between provinces exhibited a more pronounced tendency to diverge. Concurrently, the agricultural carbon emission efficiency in China exhibited a fluctuating upward trend. The development of the digital economy and the efficiency of agricultural carbon emission were found to be highly coupled. Their coupling and coordination relationship showed a downward trend followed by an upward trend. In general, it is suggested that we should increase investment in digital economy infrastructure and technology, promote digital agricultural applications, strengthen policy guidance and financial support, establish a coupling coordination mechanism and strengthen farmers' digital literacy and environmental awareness.


Assuntos
Agricultura , Carbono , Agricultura/métodos , Carbono/análise , China , Análise Espaço-Temporal , Desenvolvimento Econômico , Modelos Teóricos
2.
Int J Biol Macromol ; 272(Pt 1): 132816, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825273

RESUMO

Modulating the interactions between biopolymer matrix and nanofillers highly determined the mechanical performances of composite packaging materials. Herein, we innovatively proposed a sort of eco-friendly and mechanically robust carboxymethyl cellulose/graphene oxide/tannic acid/polyetherimide (CMC/GO/TA/PEI, CGTP) composite by employing PEI as cross-linker and TA as proton donor. The amidation reaction between -NH2 and -COOH chemically connected the CMC/GO, CMC/CMC and GO/GO and the physical interaction (e.g. hydrogen bonds and molecular entanglements) was beneficial to form dense structures. The chemical/physical bonds among polymers and nanofillers contributed to dissipate the external energy. The toughness was effectively reinforced from 1.68 MJ/m3 for CGTP0 to 4.63 MJ/m3 for CGTP1.0. Furthermore, the CGTP1.0 composite film also delivered improved gas (moisture and oxygen) barriers, UV protection and antimicrobial features. Originating from these merits, the shelf life of fresh fruits (e.g. strawberries, blueberries and cherry tomatoes) was prolonged at least 5 days under ambient conditions when the packaging box was covered by the fabricated CGTP1.0 film. Our findings not only provided a facial strategy to reinforce the interactions between biopolymer matrix and nanofillers, but also boosted the development of eco-friendly packaging materials with robust structures in the area of food packaging.


Assuntos
Carboximetilcelulose Sódica , Embalagem de Alimentos , Frutas , Grafite , Polímeros , Grafite/química , Embalagem de Alimentos/métodos , Carboximetilcelulose Sódica/química , Polímeros/química , Frutas/química , Conservação de Alimentos/métodos , Nanocompostos/química
3.
Dokl Biochem Biophys ; 516(1): 66-72, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38700817

RESUMO

The present study was aimed to explore the effect of triazole on growth and viability of liver cancer cells. Cell growth was examined using the MTT test and expression of several proteins was assessed by western blotting assay. The Matrigel-coated Transwell assay was employed to examine the infiltration of cells. The data from MTT assay showed that MHCC97H and H4TG liver cancer cell viability was inhibited by triazole in a concentration-dependent manner. After treatment with 0.5, 1.0, 2.0, 4, 8, and 16 µM doses of triazole, the rate of H4TG cell viability was decreased to 96, 73, 58, 39, 29, and 28%, respectively. Treatment of MHCC97H cells with 0.5, 1.0, 2.0, 4, 8, and 16 µM doses of triazole resulted in a reduction in cell viability to 94, 70, 53, 35, 22, and 21%, respectively. Triazole treatment also led to a significant reduction in MHCC97H cell invasiveness compared to the control cells. In MHCC97H cells treated with triazole, there was a noticeable decrease in the levels of p-ERK1/2, and p-Akt protein expression. Treatment of MHCC97H cells with triazole resulted in a prominent increase in p-p38 level. In summary, triazole inhibits growth and viability of liver cancer cells through targeting the activation of p-ERK1/2 and Akt proteins. Therefore, triazole may be investigated further as a therapeutic agent for the treatment of liver cancer.


Assuntos
Sobrevivência Celular , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Triazóis , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Triazóis/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Sobrevivência Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proliferação de Células/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Antineoplásicos/farmacologia
4.
Int J Food Microbiol ; 418: 110714, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38677238

RESUMO

Vibrio parahaemolyticus (V. parahaemolyticus) is a common seafood-borne pathogen that can colonize the intestine of host and cause gastroenteritis. Biofilm formation by V. parahaemolyticus enhances its persistence in various environments, which poses a series of threats to food safety. This work aims to investigate the function of rcpA gene in biofilm formation and virulence of V. parahaemolyticus. Deletion of rcpA significantly reduced motility, biofilm biomass, and extracellular polymeric substances, and inhibited biofilm formation on a variety of food and food contact surfaces. In mice infection model, mice infected with ∆rcpA strain exhibited a decreased rate of pathogen colonization, a lower level of inflammatory cytokines, and less tissue damage when compared to mice infected with wild type strain. RNA-seq analysis revealed that 374 genes were differentially expressed in the rcpA deletion mutant, which include genes related to quorum sensing, flagellar system, ribosome, type VI secretion system, biotin metabolism and transcriptional regulation. In conclusion, rcpA plays a role in determining biofilm formation and virulence of V. parahaemolyticus and further research is necessitated to fully understand its function in V. parahaemolyticus.


Assuntos
Proteínas de Bactérias , Biofilmes , Regulação Bacteriana da Expressão Gênica , Vibrioses , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/patogenicidade , Biofilmes/crescimento & desenvolvimento , Animais , Virulência/genética , Camundongos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vibrioses/microbiologia , Feminino
5.
PLoS One ; 19(4): e0300307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635850

RESUMO

This study constructed a multidimensional indicator system to evaluate spatio-temporal heterogeneity of China's import and export trade of 31 provinces from 2000 to 2022. This study describes the distribution of China's import and export trade by using location Gini coefficient and exploratory spatial analysis. Additionally, Multiple linear regression was used to ascertain the extent of contribution by various factors on the spatio-temporal heterogeneity of import and export trade. The simulation results show that inter-provincial import and export trade displayed distinct spatio-temporal differentiation characteristics with a prominent east-to-west disparity from 2000 to 2022. The trade links between various regions of the country have gradually strengthened, with a corresponding high correlation to the level of economic development. GDP, financial expenditure, freight transportation volume, technology market turnover, foreign investment, and disposable income of all residents, significantly influence the per capita export and import volume. In general, it is suggested that China and developing countries should take effective measures to promote balanced trade development, strengthen regional cooperation and coordination, and promote green trade and sustainable development.


Assuntos
Países em Desenvolvimento , Investimentos em Saúde , China , Desenvolvimento Econômico , Análise Espacial
6.
Stem Cell Res Ther ; 15(1): 116, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654389

RESUMO

Haploid cells are a kind of cells with only one set of chromosomes. Compared with traditional diploid cells, haploid cells have unique advantages in gene screening and drug-targeted therapy, due to their phenotype being equal to the genotype. Embryonic stem cells are a kind of cells with strong differentiation potential that can differentiate into various types of cells under specific conditions in vitro. Therefore, haploid embryonic stem cells have the characteristics of both haploid cells and embryonic stem cells, which makes them have significant advantages in many aspects, such as reproductive developmental mechanism research, genetic screening, and drug-targeted therapy. Consequently, establishing haploid embryonic stem cell lines is of great significance. This paper reviews the progress of haploid embryonic stem cell research and briefly discusses the applications of haploid embryonic stem cells.


Assuntos
Células-Tronco Embrionárias , Haploidia , Humanos , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/citologia , Animais , Diferenciação Celular
7.
Int J Biol Macromol ; 266(Pt 1): 131024, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513907

RESUMO

Improving electron transfer rate of Co species and inhibiting aggregation of metal-organic frameworks (MOFs) particles are essential prerequisites for activating advanced oxidation process in wastewater treatment field. Here, we exploit Cu species with variable valence states to accelerate electron transfer of Co species and then to boost the unsatisfactory degradation efficiency for refractory pharmaceuticals via in-situ growth of copper and cobalt species on l-lysine functionalized carboxylated cellulose nanofibers. Utilizing the synergistic interplay of Co sites and deliberately exposed Cu0/Cu1+ atoms, the subtly designed catalyst exhibited a surprising degradation efficiency (~100 %) toward tetracycline hydrochloride within 10 min (corresponding to a catalytic capacity of 267.71 mg/g) without adjusting temperature and pH. Meanwhile, the catalyst displays good recyclability, well tolerance for coexisting ions and excellent antibacterial performance derived from the intrinsic antibacterial property of Cu-MOF. This research provided a novel strategy to construct MOFs-cellulose materials toward degrading various stubborn antibiotic pollutants.


Assuntos
Antibacterianos , Celulose , Cobalto , Cobre , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Celulose/química , Cobre/química , Antibacterianos/química , Antibacterianos/farmacologia , Cobalto/química , Catálise , Tetraciclina/química , Poluentes Químicos da Água/química
8.
Int J Biol Macromol ; 265(Pt 2): 130981, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513894

RESUMO

High-value utilization of bleached lignin has been widely used in different fields, whereas the investigation on darkened lignin in composite materials was often ignored. In this work, a sort of eco-friendly and structurally robust sodium carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA)/sodium lignosulfonate (SLS) black composite mulch film was elaborately designed. The chelation and redox reaction effect between Fe ions and SLS lead to the formation of a more quinones structure on lignin, darkening both lignin and the mulch films. The chelation effect between Fe ions and biopolymer formed three-dimensional structures, which can be used as sacrifice bonds to dissipate energy and improve the mechanical properties of the composite films. In particular, the maximum elongation at break and toughness increased from 48.4 % and 1141 kJ/m3 for the CMC/PVA film to 210.9 % and 1426 kJ/m3 for the optimized CMC/PVA/SLS/Fe black mulch film, respectively. In addition, the optimized black mulch film also possesses good soil water retention, thermal preservation effect, controlled urea release, and well biodegradability. This work offered a novel strategy for designing eco-friendly black mulch with reinforced mechanical strength, slow-release urea, soil moisture retention, and heat preservation performances.


Assuntos
Ferro , Lignina , Agricultura/métodos , Solo , Álcool de Polivinil/química , Ureia , Sódio
9.
Int J Biol Macromol ; 261(Pt 1): 129533, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246448

RESUMO

Constructing high-density contact-separation sites on conductive materials highly determines the sensitivity of flexible resistance-type sensors relying on the crack microstructures. Herein, inspired from the multiple-tentacle structures on octopus, we demonstrated a sort of novel carbonized ZIF-8@loofah (CZL) as conductive material to develop ultrasensitivity flexible sensor, in which the carbonized ZIF-8 nanoparticles (~100 nm) served as tentacles. Originating from the formation of high-density contact-separation sites, the fabricated CZL-based strain sensor delivered ultrahigh sensitivity of GFmax = 15,901, short response time of 22 ms and excellent durability over 10,000 cycles. These features enable the sensor with efficient monitoring capacity for complex human activities, such as pulse rate and phonation. Moreover, when CZL was assembled into triboelectric nanogenerator (TENG), CZL-based TENG can effectively convert the irregular biomechanical energy into electric energy, providing sustainable power supply for the continuous operation of the sensing micro-system. Our findings established a novel platform to develop high-performance self-powered sensing systems of physiological parameter of human inspired from the nature.


Assuntos
Luffa , Octopodiformes , Humanos , Animais , Hidrogéis , Carboximetilcelulose Sódica , Alimentos Marinhos , Movimento Celular
10.
Int J Biol Macromol ; 258(Pt 2): 129154, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171443

RESUMO

Agricultural by-products like rice husk, bran, and spray corn husks, often utilized as feed, are considered less desirable. This study aims to enhance the utilization rate of these materials by subjecting then to liquid hot water (LHW) pretreatment, followed by enzymatic hydrolysis to produce fermentable sugars. We investigated the production of L-lactic acid using two methods: simultaneous saccharification fermentation (SSF) and separate hydrolysis fermentation (SHF), following varying intensities of LHW pretreatment. The results showed that the optimal enzymatic hydrolysis efficiency was achieved from spray corn husks under the pretreatment conditions of 155 °C and 15 min. SHF was generally more effective than SSF. The glucose L-lactic acid conversion rate in SHF using spray corn husks can reach more than 90 %. Overall, this work proposed a novel, environmental-friendly strategy for efficient and for L- lactic acid production from spray corn husks.


Assuntos
Celulose , Zea mays , Zea mays/metabolismo , Celulose/metabolismo , Ácido Láctico , Fermentação , Água , Hidrólise
11.
Int J Biol Macromol ; 260(Pt 1): 129488, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242390

RESUMO

Incorporating biopolymers into two-dimensional transition metal carbides and/or nitrides (2D MXene) has been demonstrated as an effective strategy to improve the mechanical behaviors of MXene-based composites. However, the insulate nature of biopolymers inevitably deteriorated the electrical conductivity and the sensitivity of assembled sensors. Herein, a novel cellulose nanofiber (CNF)/MXene/carbon black (CB) composite was demonstrated as the conductive layer in eco-friendly cellulose paper-based sensors by intercalating the CB into the MXene/CNF interlayer, followed by coating hydrophobic SiO2 for encapsulation. Befitting from the high-density crack-microstructures between CB and MXene, the fabricated superhydrophobic paper CB/CNF/MXene/SiO2 sensor delivered ultrahigh sensitivity of 729.52 kPa-1, low detect limit of 0.29 Pa, rapid response time of 80 ms and excellent stability over 10,000 cycles. Moreover, the fabricated sensor was capable of detecting the physiological parameter of human (e.g. huge/subtle movements) and spatial pressure distribution. Furthermore, the presence of SiO2 layer endowed the sensor with superhydrophobic performance (water contact angle ∼158.2 o) and stable electrical signals under high moisture conditions or even under water. Our work proposed a novel strategy to boost the sensitivity of MXene-based conductive layer in flexible electronic devices.


Assuntos
Celulose , Nitritos , Dióxido de Silício , Elementos de Transição , Humanos , Condutividade Elétrica , Fuligem , Água
12.
Int J Biol Macromol ; 257(Pt 2): 128745, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101673

RESUMO

The commercial graphene for Li ion batteries (LIBs) has high cost and low capacity. Therefore, it is necessary to develop a novel carbon anode. The cellulose nanowires (CNWs), which has advantages of low cost, high carbon content, is thought as a good carbon precursor. However, direct carbonization of CNWs leads to low surface area and less mesopores due to its easy aggregation. Herein, the metal-organic frameworks (MOFs) have been explored as templates to prepare porous carbon due to their 3D open pore structures. The porous carbon was developed with the coordination effect of CNWs and MOFs. The precursor of MOFs coordinates with the -OH and - COOH groups in the CNWs to provide stable structure. And the MOFs was grown in situ on CNWs to reduce aggregation and provide higher porosity. The results show that the porous carbon has high specific capacity and fast Li+/electronic conductivity. As anode for LIBs, it displays 698 mAh g-1 and the capacity retention is 85 % after 200 cycles. When using in the full-battery system, it exhibits energy density of 480 Wh kg-1, suggesting good application value. This work provides a low-cost method to synthesize porous carbon with fast Li+/electronic conductivity for high-performance LIBs.


Assuntos
Carbono , Estruturas Metalorgânicas , Porosidade , Íons , Celulose , Eletrodos , Lítio
13.
Foods ; 12(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37835311

RESUMO

Vibrio parahaemolyticus is a primary seafood-associated pathogen that could cause gastroenteritis. It can attach to various surfaces and form a biofilm, which poses serious threats to food safety. Hence, an effective strategy is urgently needed to control the biofilm formation of V. parahaemolyticus. Laurel essential oil (LEO) is used in food, pharmaceutical and other industries, and is commonly used as a flavoring agent and valuable spice in food industries. The potential antibiofilm effects of LEO against V. parahaemolyticus were examined in this study. LEO obviously reduced biofilm biomass at subinhibitory concentrations (SICs). It decreased the metabolic activity and viability of biofilm cells. Microscopic images and Raman spectrum indicted that LEO interfered with the structure and biochemical compositions of biofilms. Moreover, it also impaired swimming motility, decreased hydrophobicity, inhibited auto-aggregation and reduced attachment to different food-contact surfaces. RT-qPCR revealed that LEO significantly downregulated transcription levels of biofilm-associated genes of V. parahaemolyticus. These findings demonstrate that LEO could be potentially developed as an antibiofilm strategy to control V. parahaemolyticus biofilms in food industries.

14.
Int J Biol Macromol ; 253(Pt 3): 126775, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37699460

RESUMO

With the banning of antibiotic chemical feed additives, multi-functional bioactive feed additives have been extensively sought after by the feed industry. In this study, low-cost and renewable corn cobs were treated with liquid hot water and converted into bioactive xylo-oligosaccharides and L-lactic acid after enzymatic hydrolysis, strain activation, and fermentation under mild conditions, which achieved a full utilization of cellulose and hemicellulose in corn cobs. Simultaneous saccharification fermentation after strain activation with enzymatic hydrolysate delivered the highest conversion rate of glucose to L-lactic acid (93.00 %) and yielded 17.38 g/L L-lactic acid and 2.68 g/L xylo-oligosaccharides. On this basis, batch-feeding fermentation resulted in a 78.03 % conversion rate of glucose to L-lactic acid, 18.99 g/L L-lactic acid, and 2.84 g/L xylo-oligosaccharides. This work not only provided a green and clean bioconversion strategy to produce multi-functional feed additives but can also boost the full utilization of renewable and cheap biomass resources.


Assuntos
Celulose , Zea mays , Celulose/metabolismo , Zea mays/metabolismo , Oligossacarídeos , Fermentação , Ácido Láctico , Glucose , Hidrólise
15.
World J Stem Cells ; 15(7): 734-750, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37545755

RESUMO

BACKGROUND: Haploid embryonic stem cells (haESCs) have been established in many species. Differentiated haploid cell line types in mammals are lacking due to spontaneous diploidization during differentiation that compromises lineage-specific screens. AIM: To derive human haploid neural stem cells (haNSCs) to carry out lineage-specific screens. METHODS: Human haNSCs were differentiated from human extended haESCs with the help of Y27632 (ROCK signaling pathway inhibitor) and a series of cytokines to reduce diploidization. Neuronal differentiation of haNSCs was performed to examine their neural differentiation potency. Global gene expression analysis was con-ducted to compare haNSCs with diploid NSCs and haESCs. Fluorescence activated cell sorting was performed to assess the diploidization rate of extended haESCs and haNSCs. Genetic manipulation and screening were utilized to evaluate the significance of human haNSCs as genetic screening tools. RESULTS: Human haESCs in extended pluripotent culture medium showed more compact and smaller colonies, a higher efficiency in neural differentiation, a higher cell survival ratio and higher stability in haploidy maintenance. These characteristics effectively facilitated the derivation of human haNSCs. These human haNSCs can be generated by differentiation and maintain haploidy and multipotency to neurons and glia in the long term in vitro. After PiggyBac transfection, there were multiple insertion sites in the human haNSCs' genome, and the insertion sites were evenly spread across all chromosomes. In addition, after the cells were treated with manganese, we were able to generate a list of manganese-induced toxicity genes, demonstrating their utility as genetic screening tools. CONCLUSION: This is the first report of a generated human haploid somatic cell line with a complete genome, proliferative ability and neural differentiation potential that provides cell resources for recessive inheritance and drug targeted screening.

16.
Int J Biol Macromol ; 247: 125559, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37394212

RESUMO

Water pollution remains a serious problem for aquatic organism and human beings. Developing an efficient material which can simultaneously remove and convert pollutants into low or no harmful compounds is an essential issue. Targeting at this goal, a multifunctional and amphoteric wastewater treatment material of Co-MOF and functionalized cellulose-based composite (CMC/SA/PEI/ZIF-67) was designed and prepared. Carboxymethyl cellulose (CMC) and sodium alginate (SA) were selected as support to construct an interpenetrating network structure and made it crosslinked with polyethyleneimine (PEI) for further in situ growth of ZIF-67 with good dispersion. The material was characterized using an appropriate set of spectroscopic and analytical techniques. When applied in the adsorption of heavy metal oxyanions with no adjustment of pH, the adsorbent could completely decontaminate Cr(VI) at both low and high initial concentrations with good reduction rates. The adsorbent maintained good reusability after five cycles. Meanwhile, the cobalt species of CMC/SA/PEI/ZIF-67 can activate peroxymonosulfate to generate high oxidizing substances (such as SO4-· and ·OH- radicals) to degrade cationic rhodamine B dye within 120 min, thus indicating the amphoteric and catalytic nature of our CMC/SA/PEI/ZIF-67 adsorbent. The mechanism of the adsorption and catalytic process was also discussed based with the assistance of different characterization analysis.


Assuntos
Carboximetilcelulose Sódica , Estruturas Metalorgânicas , Poluentes Químicos da Água , Purificação da Água , Estruturas Metalorgânicas/química , Purificação da Água/métodos , Carboximetilcelulose Sódica/química , Adsorção , Poluentes Químicos da Água/química
17.
Carbohydr Polym ; 313: 120898, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182981

RESUMO

Huge electronic wastes motivated the flourishing of biodegradable electrically conductive cellulosic paper-based functional materials as flexible wearable devices. However, the relatively low sensitivity and unstable output in combination with poor wet strength under high moisture circumstances impeded the practical application. Herein, a superhydrophobic cellulosic paper with ultrahigh sensitivity was proposed by innovatively employing ionic sodium carboxymethyl cellulose (CMC) as bridge to reinforce the interfacial interaction between carbon black (CB) and multilayer graphene (MG) and SiO2 nanoparticles as superhydrophobic layer. The resultant paper-based (PB) sensor displayed excellent strain sensing behaviors, wide working range (-1.0 %-1.0 %), ultrahigh sensitivity (gauge factor, GF = 70.2), and satisfied durability (>10,000 cycles). Moreover, the superhydrophobic surface offered well waterproof and self-cleaning properties, even stable running data without encapsulation under extremely high moisture conditions. Impressively, when the fabricated PB sensor was applied for electronic-skin (E-skin), the signal capture of spatial strain of E-skin upon bodily motion was breezily achieved. Thus, our work not only provides a new pathway for reinforcing the interfacial interaction of electrically conductive carbonaceous materials, but also promises a category of unprecedentedly superhydrophobic cellulosic paper-based strain sensors with ultra-sensitivity in human-machine interfaces field.

18.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175452

RESUMO

Metal organic frameworks (MOFs) have gained remarkable interest in water treatment due to their fascinating characteristics, such as tunable functionality, large specific surface area, customizable pore size and porosity, and good chemical and thermal stability. However, MOF particles tend to easily agglomerate in nanoscale, thus decreasing their activity and processing convenience. It is necessary to shape MOF nanocrystals into maneuverable structures. The in situ growth or ex situ incorporation of MOFs into inexpensive and abundant cellulose-family materials can be effective strategies for the stabilization of these MOF species, and therefore can make available a range of enhanced properties that expand the industrial application possibilities of cellulose and MOFs. This paper provides a review of studies on recent advances in the application of multi-dimensional MOF-cellulose composites (e.g., aerogels, membranes, and bulk materials) in wastewater remediation (e.g., metals, dyes, drugs, antibiotics, pesticides, and oils) and water regeneration by adsorption, photo- or chemocatalysis, and membrane separation strategies. The advantages brought about by combining MOFs and cellulose are described, and the performance of MOF-cellulose is described and compared to its counterparts. The mechanisms of relative MOF-cellulose materials in processing aquatic pollutants are included. Existing challenges and perspectives for future research are proposed.


Assuntos
Estruturas Metalorgânicas , Purificação da Água , Estruturas Metalorgânicas/química , Metais , Adsorção , Porosidade
19.
Bioresour Technol ; 380: 129070, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37088427

RESUMO

Pretreatment is important to overcome the structural recalcitrance of reed (a viable energy grass) to produce fermentable sugar. Herein, the study reported the pretreatment of reed using different alkali chemicals (sodium hydroxide/anthraquinone, sodium hydroxide/sodium sulfite, sodium hydroxide/sodium sulfide, ammonia/hydrogen peroxide, triethanolamine, and ammonia/sodium sulfite). The comparative study showed that the pretreatment using ammonia and sodium sulfite (NS) performed the best among them. The NS pretreatment of reed was further optimized using the Response Surface Methodology (RSM). The results showed that about 90.36% lignin was removed when reed was pretreated with 10 wt% of ammonia and 10% of sodium sulfite at 172 °C for 20 min. The excellent lignin removal performance was attributable to the synergistic effects between ammonia and sodium sulfite. The NS pretreated reed achieved 85.6% of enzymatic hydrolysis efficiency and 64.83% of total sugar yield.


Assuntos
Celulase , Lignina , Lignina/química , Amônia , Hidróxido de Sódio/química , Celulase/química , Açúcares , Hidrólise
20.
Carbohydr Polym ; 305: 120570, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737208

RESUMO

Cellulose is the cheapest and mostly widespread green raw material on earth. Due to the easy and versatile developed modification of cellulose, many cellulosic paper-based sustainable materials and their multifunctional applications have attained increasing interest under the background of the implementation of the "plastic ban" policy. However, intrinsic cellulose paper is hydrophilic and non-water-proof, which highly limited its application, thus becoming a bottleneck for the development of "cellulosic paper-based plastic replacement". Unquestioningly, the superhydrophobic modification of cellulosic paper-based materials and the extension of their high value-added applications are highly desired, which is the main content of this review. More importantly, we presented the comprehensive discussion of the functionalized applications of superhydrophobic cellulosic paper-based materials ranging from conventional products to high value-added functional materials such as paper straw and paper mulch film for the first time, which have great industrialization potential and value. This review would offer the valuable guidance and insightful information for the rational construction of sustainable superhydrophobic cellulosic paper for advanced functional devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...