Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
ChemSusChem ; : e202400624, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616165

RESUMO

Glycerol oxidation-assisted water electrolysis has emerged as a cost-effective way of co-producing green hydrogen and HCOOH. Still, preparing highly selective and stable nickel-based metal electrocatalysts remains a challenge. Herein, heterostructure Ni3N/WO3 nanosheet arrays of bifunctional catalysts with large specific surface areas loaded on nickel foam (denoted as Ni3N/WO3/NF) were synthesized. This catalyst was for glycerol oxidation reaction (GOR) and hydrogen evolution reaction (HER) with excellent catalytic performance, a voltage saving of 267 mV compared to oxygen evolution reaction (OER), and a HER overpotential of 104 mV at 100 mA cm-2. The cell voltage in the assembled GOR//HER hybrid electrolysis system reaches 100 mA cm-2 at 1.50 V, 296 mV lower than the potential required for overall water splitting. This work demonstrates that replacing GOR with OER using a cost-effective and highly active Ni-based bifunctional electrocatalyst can make hybrid water electrolysis an energy-efficient, sustainable, and green strategy for hydrogen production.

2.
Microbiome ; 12(1): 56, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494479

RESUMO

BACKGROUND: Accumulating clinical evidence suggests that lung microbiome is closely linked to the progression of pulmonary diseases; however, it is still controversial which specimen type is preferred for the evaluation of lung microbiome. METHODS AND RESULTS: To address this issue, we established a classical acute lung injury (ALI) mice model by intratracheal instillation of lipopolysaccharides (LPS). We found that the bacterial DNA obtained from the bronchoalveolar lavage fluid (BALF), intact lung tissue [Lung(i)], lung tissue after perfused [Lung(p)], and feces of one mouse were enough for 16S rRNA sequencing, except the BALF of mice treated with phosphate buffer saline (PBS), which might be due to the biomass of lung microbiome in the BALF were upregulated in the mice treated with LPS. Although the alpha diversity among the three specimens from lungs had minimal differences, Lung(p) had higher sample-to-sample variation compared with BALF and Lung(i). Consistently, PCoA analysis at phylum level indicated that BALF was similar to Lung(i), but not Lung(p), in the lungs of mice treated with LPS, suggesting that BALF and Lung(i) were suitable for the evaluation of lung microbiome in ALI. Importantly, Actinobacteria and Firmicutes were identified as the mostly changed phyla in the lungs and might be important factors involved in the gut-lung axis in ALI mice. Moreover, Actinobacteria and Proteobacteria might play indicative roles in the severity of lung injury. CONCLUSION: This study shows both Lung(i) and BALF are suitable for the evaluation of murine lung microbiome in ALI, and several bacterial phyla, such as Actinobacteria, may serve as potential biomarkers for the severity of ALI. Video Abstract.


Assuntos
Lesão Pulmonar Aguda , Microbiota , Animais , Camundongos , Líquido da Lavagem Broncoalveolar/microbiologia , Lipopolissacarídeos , RNA Ribossômico 16S/genética , Pulmão/microbiologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Bactérias/genética
3.
Int J Womens Health ; 16: 265-271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370343

RESUMO

Primary angiosarcomas are a rare type of soft-tissue sarcomas that originate from endothelial cells. These sarcomas can develop in any part of the body and have a poor prognosis. However, they are commonly found in the skin of elderly white men, particularly on the scalp and head region. Primary angiosarcoma of the cervix is exceptionally rare. To date, only two cases of this disease have been reported worldwide. The diagnosis of the disease is difficult microscopically, requiring immunohistochemistry and genetic testing to distinguish. We report a recent case, in which the lesion was preoperatively considered a high-grade endometrial stromal sarcoma. A 35-year-old woman presented with vaginal bleeding and cervical erosions. A high-grade endometrial stromal sarcoma involving the cervix was considered and a modified radical hysterectomy was performed with bilateral salpingo-oophorectomy and sentinel lymph nodes resection. The gene diagnosis performed by fluorescence in situ hybridization for YWHAE translocation fusion was negative excluding a YWHAE-translocated high-grade endometrial stromal sarcoma. A primary angiosarcoma of the cervix was finally diagnosed. Primary angiosarcoma of the cervix is rare, and gynecologic pathologists do not know it well, so it is easy to be wrongly considered. Immunohistochemistry and genetic testing help confirm the diagnosis.

4.
Nanotechnology ; 35(22)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38387087

RESUMO

Replacing the slow oxygen evolution reaction with favorable hydrazine oxidation reaction (HzOR) is a green and efficient way to produce hydrogen. In this work, we synthesize amorphous/crystalline RhFeP metallene via phase engineering and heteroatom doping. RhFeP metallene has good catalytic activity and stability for HER and HzOR, and only an ultralow voltage of 18 mV is required to achieve 10 mA cm-2in a two-electrode hydrazine-assisted water splitting system. The superior result is mainly ascribed to the co-doping of Fe and P and the formation of amorphous/crystalline RhFeP metallene with abundant phase boundaries, thereby adjusting electronic structure and increasing active sites.

5.
Inorg Chem ; 63(6): 3099-3106, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38299496

RESUMO

Electrochemical conversion of nitrogen into ammonia at ambient conditions as a sustainable approach has gained significant attention, but it is still extremely challenging to simultaneously obtain a high faradaic efficiency (FE) and NH3 yield. In this work, the interstitial boron-doped porous Pd nanotubes (B-Pd PNTs) are constructed by combining the self-template reduction method with boron doping. Benefiting from distinctive one-dimensional porous nanotube architectonics and the incorporation of the interstitial B atoms, the resulting B-Pd PNTs exhibit high NH3 yield (18.36 µg h-1 mgcat.-1) and FE (21.95%) in neutral conditions, outperforming the Pd/PdO PNTs (10.4 µg h-1 mgcat.-1 and 8.47%). The present study provides an attractive method to enhance the efficiency of the electroreduction of nitrogen into ammonia by incorporating interstitial boron into porous Pd-based catalysts.

6.
Reprod Health ; 21(1): 18, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310235

RESUMO

BACKGROUND: Male infertility is a global health issue. The more causative genes related to human male infertility should be further explored. The essential role of Zcwpw1 in male mouse fertility has been established and the role of ZCWPW1 in human reproduction needs further investigation to verify. METHODS: An infertile man with oligoasthenoteratozoospermia phenotype and his parents were recruited from West China Second University Hospital, Sichuan University. A total of 200 healthy Han Chinese volunteers without any evidence of infertility were recruited as normal controls, while an additional 150 infertile individuals were included to assess the prevalence of ZCWPW1 variants in a sporadic male sterile population. The causative gene variant was identified by Whole-exome sequencing and Sanger sequencing. The phenotype of the oligoasthenoteratozoospermia was determined by Papanicolaou staining, immunofluorescence staining and electron microscope. In-vitro experiments, western blot and in-silicon analysis were applied to assess the pathogenicity of the identified variant. Additionally, we examined the influence of the variant on the DNA fragmentation and DNA repair capability by Sperm Chromatin Dispersion and Neutral Comet Assay. RESULTS: The proband exhibits a phenotype of oligoasthenoteratozoospermia, his spermatozoa show head defects by semen examination, Papanicolaou staining and electron microscope assays. Whole-exome sequencing and Sanger sequencing found the proband carries a homozygous ZCWPW1 variant (c.1064C > T, p. P355L). Immunofluorescence analysis shows a significant decrease in ZCWPW1 expression in the proband's sperm. By exogenous expression with ZCWPW1 mutant plasmid in vitro, the obvious declined expression of ZCWPW1 with the mutation is validated in HEK293T. After being treated by hydroxyurea, MUT-ZCWPW1 transfected cells and empty vector transfected cells have a higher level of γ-H2AX, increased tail DNA and reduced H3K9ac level than WT-ZCWPW1 transfected cells. Furthermore, the Sperm Chromatin Dispersion assay revealed the proband's spermatozoa have high DNA fragmentation. CONCLUSIONS: It is the first report that a novel homozygous missense mutation in ZCWPW1 caused human male infertility with sperm head defects and high DNA fragmentation. This finding enriches the gene variant spectrum and etiology of oligoasthenoteratozoospermia.


Assuntos
Infertilidade Masculina , Oligospermia , Humanos , Masculino , Cromatina , Fragmentação do DNA , Células HEK293 , Infertilidade Masculina/genética , Sêmen , Cabeça do Espermatozoide , Espermatozoides
7.
RSC Adv ; 14(7): 4734-4741, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38318611

RESUMO

A series of hierarchical mordenite (MOR) catalysts were synthesized by adding soft templates via the solvent-free method. The influence of different kinds of soft templates on the structure, morphology and acid sites of mordenite were systematically characterized. The characterization results revealed that the addition of soft templates could successfully introduce hierarchical structure into the system while maintaining good crystallinity. The specific surface area and pore volume became larger. Surfactants could also affect the amount and distribution of acid sites, which in turn would affect the dimethyl ether carbonylation activity. Compared with cationic and nonionic surfactants, the addition of anionic surfactants such as sodium dodecyl benzene sulfonate could result in more Al species to preferentially enter into the 8 member ring, thus enhancing the amount of active sites for the carbonylation reaction while weakening the strength. Meanwhile, the addition of sodium dodecyl benzene sulfonate could also reduce the number of strong acid sites in the 12 member ring and obviously improve the carbonylation performance.

8.
Gynecol Oncol ; 182: 156-167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266402

RESUMO

OBJECTIVE: This study explored promising prognostic and immune therapeutic candidate biomarkers for OC and determined the expression, prognostic value, and immune effects of UCHL3. METHODS: UCHL3 expression and clinical data were investigated using bioinformatic analysis. CCK8 and transwell assays were conducted to evaluate the impact of UCHL3 on proliferation and migration, and the effects of UCHL3 were further validated in a mouse model. Univariate and least absolute shrinkage and selection operator regression analyses were performed to construct a novel UCHL3-related prognostic risk model. Gene set enrichment analysis (GSEA) and immune analysis were performed to identify the significantly involved functions of UCHL3. Finally, bioinformatic analysis and immunohistochemistry were performed to explore the effect of UCHL3 on chemotherapy. RESULTS: UCHL3 expression was upregulated and associated with worse overall survival (OS) in OC. UCHL3 depletion repressed cell proliferation and migration both in vitro and in vivo. Furthermore, 237 genes were differentially expressed between the high and low UCHL3 expression groups. Subsequently, a UCHL3-related prognostic signature was built based on six prognostic genes (PI3, TFAP2B, MUC7, PSMA2, PIK3C2G, and NME1). Independent prognostic analysis suggested that age, tumor mutational burden, and RiskScore can be used as independent prognostic factors. The immune infiltration analysis and GSEA suggested that UCHL3 expression was related to the immune response. In addition, UCHL3 expression was higher in platinum-resistant OC patients than in platinum-sensitive patients. UCHL3 overexpression was associated with poorer OS. CONCLUSION: UCHL3 overexpression contributes to aggressive progression, poor survival, and chemoresistance in OC. Therefore, UCHL3 may be a candidate prognostic biomarker and potential target for controlling progression and platinum resistance in OC.


Assuntos
Neoplasias Ovarianas , Animais , Camundongos , Feminino , Humanos , Biomarcadores , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Agressão , Proliferação de Células , Biologia Computacional , Platina , Prognóstico , Ubiquitina Tiolesterase/genética
9.
Langmuir ; 40(6): 2990-3003, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38291780

RESUMO

Eco-friendly photocatalysts for water splitting, highly efficient in oxygen/hydrogen evolution reactions, hold great promise for the storage of inexhaustible solar energy and address environmental challenges. However, current common photocatalysts rarely exhibit both H2 and O2 production performances unless some regulatory measures, such as strain engineering, are implemented. Additionally, the extensive utilization of flexible electronics remains constrained by their high Young's modulus. Herein, on the basis of density functional theory calculations, we identify a novel spontaneous oxygen-producing two-dimensional Ca(BiO2)2 material, which can efficiently regulate the electronic structures of the surface active sites, optimize the reaction pathways, reduce the reaction energy barriers, and boost the overall water-splitting activity through biaxial strain modulation. In detail, an unstrained Ca(BiO2)2 monolayer not only possesses a suitable band gap value (2.02 eV) to fulfill the photocatalytic water-splitting band edge relationships but also holds favorable transport properties, excellent optical absorption across the visible light spectrum, and spontaneous oxygen production under neutral conditions. More excitingly, under application of a 7% biaxial tensile strain modulation with an ideal biaxial strength of 32.35 GPa nm, the Ca(BiO2)2 monolayer not only maintains its structural integrity but also exhibits a completely spontaneous reaction for photocatalytic hydrogen precipitation with superior optical absorption. This can primarily be attributed to the substantial reduction of the potential barrier through strain engineering as well as the weakening of bond energy resulting from changes of the adsorption site as calculated by crystal orbital Hamiltonian population analysis. This flexible stretchable electronic modulated the photocatalyst behavior and bond energy of O-Bi and O-Ca interactions, offering outstanding potential for photocatalytic water spontaneous oxygen and hydrogen evolution among all of the reported metal oxides, and is more likely to become a promising candidate for future flexible electronic devices.

12.
Chem Commun (Camb) ; 60(3): 348-351, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38078506

RESUMO

A facile one-step solvothermal method was developed to synthesize Ir-doped Co-based metal-organic framework (CoIr-MOF) nanoarrays as a bifunctional electrocatalyst for water-glucose co-electrolysis. It was demonstrated that in situ incorporation of a low-content of Ir cations could modulate the electronic structure of Co active centers and thus boost the electrocatalytic performance towards both the hydrogen evolution reaction and glucose-to-formate oxidation reaction.

13.
Small ; 20(1): e2305000, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649164

RESUMO

Upgrading overall water splitting (OWS) system and developing high-performance electrocatalysts is an attractive way to the improve efficiency and reduce the consumption of hydrogen (H2 ) production from electrolyzed water. Here, a Pt cluster/Ir metallene heterojunction structure (Pt/Ir hetero-metallene) with a unique Pt/Ir interface is reported for the conversion of ethylene glycol (EG) to glycolic acid (GA) coupled with H2 production. With the assistance of ethylene glycol oxidation (EGOR), the Pt/Ir||Pt/Ir hetero-metallene two-electrode water electrolysis system exhibits a lower cell voltage of 0.36 V at 10 mA cm-2 . Furthermore, the Faradaic efficiency of EG to GA is as high as 87%. The excellent performance of this new heterostructure arise from the charge redistribution and strain effects induced by Pt-Ir interactions between the heterogeneous interfaces, as well as the larger specific surface area and more active sites due to the metallene structure.

14.
Nanotechnology ; 35(15)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38150731

RESUMO

The development of effective and stable cathode electrocatalysts is highly desired for fuel cells. Controlling the composition and morphology of Pd-based materials can provide a great opportunity to improve their oxygen reduction reaction (ORR) performance. Here, we report the synthesis of hexagonal close-packed (hcp) Pd2B nanosheet assemblies (Pd2B NAs) via the boronation reaction between as-synthesized Pd NAs and N,N-dimethylformamide. The hcp Pd2B NAs with uniform pore distribution can provide sufficient active sites for ORRs. The insertion of B atoms can induce the phase transition from face-centered cubic structure to hcp structure, as the most thermodynamically stable phase in the Pd-B alloy, which is beneficial for enhancing the ORR stability and toxicity resistance. Therefore, the hcp Pd2B NAs exhibit superior mass activity, specific activity and excellent stability for ORR. The present strategy of boron-intercalation-triggered crystalline transition of Pd-based nanomaterials is valuable for the design of metal-nonmetal catalysts with enhanced performance.

15.
Chem Commun (Camb) ; 59(93): 13875-13878, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37933464

RESUMO

A new kind of electrocatalyst consisting of yttrium-doped Co(OH)F (Y-Co(OH)F) nanowires was synthesized by one hydrothermal method for nitrate electroreduction to ammonia. It was demonstrated that the rare earth element Y, as an oxophilic metal, can be approximated as Lewis acid sites enhancing nitrate adsorption on the catalyst surface. Therefore, the Y-Co(OH)F exhibits excellent nitrate reduction performance, reaching an optimal ammonia production rate of 0.2149 mmol h-1 cm-2 and ammonia faradaic efficiency of 91.81%.

16.
Inorg Chem ; 62(39): 16228-16235, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37724563

RESUMO

Utilizing nitrate from wastewater as a N-source for ammonia synthesis via electrocatalysis is of significance for both environmental protection and ecological nitrogen cycle balance, which requires high-performance electrocatalysts to drive selective nitrate-to-ammonia transformation. In this work, an electrochemical postmodification strategy was developed to regulate the surface structure of presynthesized Cu nanodendrites at the atomic level. A combination of physicochemical characterization and electrochemical study demonstrates that such a treatment could induce surface Cu atom rearrangement and result in increased electrochemically active surface area and high density of surface-active sites, disclosing a high electrocatalytic nitrate-to-ammonia capability, with an optimal NH3 yield rate of 0.2238 mmol h-1 cm-2 and a corresponding Faradaic efficiency of 94.43%. This study may provide a guiding design avenue for atomic arrangement engineering of metallic nanocrystals via electrochemical postmodification for nitrate reduction reaction and other energy conversion electrocatalysis.

17.
Nat Commun ; 14(1): 5679, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709775

RESUMO

Organic electrocatalytic conversion is an essential pathway for the green conversion of low-cost organic compounds to high-value chemicals, which urgently demands the development of efficient electrocatalysts. Here, we report a Cu single-atom dispersed Rh metallene arrays on Cu foam for cathodic nitrobenzene electroreduction reaction and anodic methanol oxidation reaction. In the coupled electrocatalytic system, the Cusingle-atom-Rh metallene arrays on Cu foam requires only the low voltages of 1.18 V to reach current densities of 100 mA cm-2 for generating aniline and formate, with up to ~100% of nitrobenzene conversion/ aniline selectivity and over ~90% of formate Faraday efficiency, achieving synthesis of high-value chemicals. Density functional theory calculations reveal the electron effect between Cu single-atom and Rh host and catalytic reaction mechanism. The synergistic catalytic effect and H*-spillover effect can improve catalytic reaction process and reduce energy barrier for reaction process, thus enhancing electrocatalytic reaction activity and target product selectivity.

18.
Inorg Chem ; 62(37): 15157-15163, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37658811

RESUMO

Pd-based metallene is regarded as an efficient catalyst in the field of oxygen reduction reaction (ORR) because of its fantastic physicochemical features. The morphological structure control, lattice strain engineering, and electronic structure modulation of Pd-based metallene are effective tactics to enhance its electrocatalytic performance. In this work, we fabricate atomically thin B-doped Pd metallene nanoribbons (B-Pd MNRs) for efficient alkaline ORR. The atomically thin nanoribbon structure of B-Pd MNRs can expose many surface atoms as catalytically active sites. Moreover, the incorporation of boron effectively induces the lattice expansion and modulates the electronic structure of Pd, which can synergistically weaken the adsorption of intermediate species on B-Pd MNRs. Therefore, the B-Pd MNRs display excellent activity and durability for ORR. This work opens an avenue to the synthesis of atomically thin heteroatom-doped metallene nanoribbons for energy electrocatalytic applications.

19.
Front Public Health ; 11: 1225652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701907

RESUMO

Background: To explore the positivity rate and genotype distribution of human papillomavirus (HPV) in cervical squamous cell carcinoma (CSCC) tissues in central and eastern China and to provide theoretical basis for cervical cancer screening and prophylactic HPV vaccine development in China. Methods: DNA was extracted from paraffin-embedded tissues of CSCC samples and exfoliated cervical cells of cervical cancer screening populations. 23 HPV genotypes were detected by combining polymerase chain reaction (PCR) and reverse dot hybridized gene chip detection technology in 2,306 CSCC tissues and 10,245 cervical cancer screening populations. The genotype distribution of HPV infection was analyzed. Results: The overall infection rate of HPVs in 2,306 CSCC patients was 92.71%. The frequency of single-type HPV infection and multiple-type HPV infection were 86.48% and 13.51%, respectively. The most common HPV genotypes detected in Chinese CSCC tissues were HPV-16, HPV-18, HPV-31, HPV-33, HPV-45, HPV-52, HPV-58, and HPV-59. The overall positivity rate of these eight high-risk HPV (HR-HPV) genotypes in HPV-positive CSCC was as high as 96.91%. Of which the positivity rate of seven HR-HPV genotypes related to nine-valent HPV vaccines in HPV-positive CSCC was 95.09%. Meanwhile, the overall infection rates of HR-HPV and low-risk HPV (LR-HPV) in female aged 35-64 years who underwent cervical cancer screening were 13.16% and 1.32%, respectively. The high-frequency HR-HPV genotypes in cervical cancer screening women were HPV-52, HPV-58, HPV-16, HPV-53, HPV-68, HPV-39, HPV-51, and HPV-56, with positivity rates of 2.25%, 1.60%, 1.31%, 1.22%, 0.93%, 0.92%, 0.78%, and 0.74%, respectively. Conclusion: Among women screened for cervical cancer in China, detecting the 8 high-frequency HR-HPV genotypes can reduce technical difficulty and reagent costs, while also improving the efficiency and effectiveness of cervical cancer screening. HPV genotyping assists gynecologists in assessing the risk of HR-HPV-positive cervical intraepithelial neoplasia and guiding them in implementing appropriate interventions. Furthermore, HPV genotyping is helpful for doctors to follow up HR-HPV-positive women and to evaluate the protective effect of HPV vaccine.


Assuntos
Carcinoma de Células Escamosas , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Papillomavirus Humano , Neoplasias do Colo do Útero/epidemiologia , Infecções por Papillomavirus/epidemiologia , Detecção Precoce de Câncer , Prevalência , Carcinoma de Células Escamosas/epidemiologia
20.
Inorg Chem ; 62(33): 13537-13543, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37540794

RESUMO

Designing two-dimensional (2D) materials functionalized with organic molecules is an effective tactic to enhance catalytic performances for the oxygen reduction reaction (ORR). Herein, we synthesize Pd metallene with in situ modification of polyethylenimine-ethylenediamine (Pd@PEI-EDA metallene), in which PEI-EDA serves as both the structure-directing agent and modifier. Pd@PEI-EDA metallene has ample active sites and tuneable electronic structures due to ultrathin nanosheets with abundant wrinkles and interfacial structure. In contrast with commercial Pd/C and Pt/C, Pd@PEI-EDA metallene displays preferable catalytic ORR performance under alkaline conditions. This work offers an in situ interface engineering tactic for the preparation of 2D polymer-metal electrocatalysts to boost the ORR performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...