Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(18): 5490-5497, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38657179

RESUMO

The sodium (Na) metal anode encounters issues such as volume expansion and dendrite growth during cycling. Herein, a novel three-dimensional flexible composite Na metal anode was constructed through the conversion-alloying reaction between Na and ultrafine Sb2S3 nanoparticles encapsulated within the electrospun carbon nanofibers (Sb2S3@CNFs). The formed sodiophilic Na3Sb sites and the high Na+-conducting Na2S matrix, coupled with CNFs, establish a spatially confined "sodiophilic-conductive" network, which effectively reduces the Na nucleation barrier, improves the Na+ diffusion kinetics, and suppresses the volume expansion, thereby inhibiting the Na dendrite growth. Consequently, the Na/Sb2S3@CNFs electrode exhibits a high Coulombic efficiency (99.94%), exceptional lifespan (up to 2800 h) at high current densities (up to 5 mA cm-2), and high areal capacities (up to 5 mAh cm-2) in symmetric cells. The coin-type full cells assembled with a Na3V2(PO4)3/C cathode demonstrate significant enhancement in electrochemical performance. The flexible pouch cell achieves an excellent energy density of 301 Wh kg-1.

2.
ACS Appl Mater Interfaces ; 16(17): 22055-22065, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636080

RESUMO

Nb2O5 has been viewed as a promising anode material for lithium-ion batteries by virtue of its appropriate redox potential and high theoretical capacity. However, it suffers from poor electric conductivity and low ion diffusivity. Herein, we demonstrate the controllable fabrication of Cu-doped Nb2O5 with orthorhombic (T-Nb2O5) and monoclinic (H-Nb2O5) phases through annealing the solvothermally presynthesized Nb2O5 precursor under different temperatures in air, and the Cu doping amount can be readily controlled by the concentration of the precursor solution, whose effect on the lithium storage behaviors of the Cu-doped Nb2O5 is thoroughly investigated. H-Nb2O5 shows obvious redox peaks (Nb5+/Nb4+ and Nb4+/Nb3+) with much higher capacity and better cycling stability than those for the widely investigated T-Nb2O5. When introducing appropriate Cu doping, the optimized H-Cu0.1-Nb2O5 electrode shows greatly enhanced conductivity and lower diffusion barrier as revealed by the theoretical calculations and electrochemical characterizations, delivering a high reversible capacity of 203.6 mAh g-1 and a high capacity retention of 140.8 mAh g-1 after 5000 cycles at 1 A g-1, with a high initial Coulombic efficiency of 91% and a high rate capacity of 144.2 mAh g-1 at 4 A g-1. As a demonstration for full-cell application, the H-Cu0.1-Nb2O5||LiFePO4 cell displays good cycling performance, exhibiting a reversible capacity of 135 mAh g-1 after 200 cycles at 0.2 A g-1. More importantly, this work offers a new synthesis protocol of the monoclinic Nb2O5 phase with high capacity retention and improved reaction kinetics.

3.
Heliyon ; 10(5): e25505, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434336

RESUMO

Shanghai as an international metropolis is representative of modern urban agriculture in China, so it is of great significance to analyse the pesticide residue in vegetables grown in Shanghai. This study investigated the residue of 68 commonly used pesticides (divided into insecticides, fungicides, herbicides and plant growth regulators) in 7028 vegetable samples in Shanghai from 2018 to 2021, and estimated the dietary intake risk of these pesticides. These samples were divided into 6 categories. A total of 29.21% of vegetable samples had pesticide residues, and 0.47% of samples exceeded the maximum residue limits (MRLs) set by the national food safety standard of China. Leafy vegetables had the highest detection rate of pesticide residues (32.9%), multiple detection rate (12.2%), pesticide residue concentration (35.7 mg/kg), and the number of samples exceeding the MRL (30). There were 36 out of 68 pesticides detected in vegetables, and the top 3 were dimethomorph, propamocarb and acetamiprid. The target hazard quotient (THQ) and hazard index (HI) of these noticeablepesticides were all less than 1, illustrating that there may be no obvious health hazard for residents exposed to the pesticide levels. This study can promote the green development of the pesticide industry and provide important reference data for the monitoring of pesticide residues and their hazards under modern urban agriculture.

4.
Small ; : e2400468, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516967

RESUMO

Alloy-type antimony (Sb) and conversion-type molybdenum (Mo) anodes have attracted extensive attention in the application of lithium-ion batteries (LIBs) owing to their high theoretical capacity. In this study, Sb2MoO6 nanowires are prepared via a hydrothermal method and assessed their thermal behavior upon heat treatment, observing an intriguing transformation from nanowire to Sb2O3/MoOx nanosheets. To enhance structure stability, the Sb2MoO6 nanowires are successfully coated with a polyphosphazene layer (referred to as PZS@Sb2MoO6), which not only preserved the nanowires form but also yielded N/S co-doped carbon-coated SbPO4/MoOx (NS-C@SbPO4/MoOx) nanowires following annealing in an inert environment. This composite benefits from the stable PO4 3- anion that serve as a buffer against volume expansion and form a Li3PO4 matrix during cycling, both of which substantially bolster ion transport and cycle endurance. Doping with heteroatoms introduces numerous oxygen vacancies, augmenting the number of electrochemically active sites, and carbon integration considerably enhances the electronic conductivity of the electrode and alleviates the volume-change-induced electrode pulverization. Employed as anode materials in LIBs, the NS-C@SbPO4/MoOx electrode exhibits remarkable cycling performance (449.8 mA h g-1 at 1000 mA g-1 over 700 cycles) along with superior rate capability (394.2 mA h g-1 at 2000 mA g-1).

5.
J Colloid Interface Sci ; 661: 888-896, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330661

RESUMO

Tin dioxide (SnO2) is a promising alternative material to graphite anode, but the large volume change induced electrode pulverization issue has limited its application in lithium-ion batteries (LIBs). In contrast, titanium dioxide (TiO2) anode shows high structure stability upon lithium insertion/extraction, but with low specific capacity. To overcome their inherent disadvantages, combination of SnO2 with TiO2 and highly conductive carbon material is an effective way. Herein, we report a facile fabrication method of carbon-coated SnO2/TiO2 nanowires (SnO2/TiO2@C) using tin titanate nanowires as precursor, which are prepared by reacting SnCl2·2H2O with layered sodium titanate (Na2Ti3O7) nanowires in the aqueous solution though the ion exchange between Sn2+ and Na+. After annealing under argon atmosphere, the hydrothermally carbon-coated tin-titanate nanowires decompose, forming a unique hybrid structure, where ultrafine SnO2 nanoparticles are uniformly embedded within the TiO2 substrate with carbon coating. Consequently, the SnO2/TiO2@C nanowires demonstrate excellent lithium storage capacity with high pseudocapacitance contribution, excellent reversible capacity, and long-term cycling stability (673.7/510.5 mAh/g at 0.5/1.0 A/g after 250/800 cycles), owing to the unique hybrid structure, as the well-dispersion of ultra-small SnO2 within TiO2 nanowire substrate with simultaneous carbon coating efficiently suppresses the volume changes of SnO2, provides abundant reactive sites for lithium storage, and enhances the electrical conductivity with shortened ion transport distance.

6.
Small ; 20(26): e2311126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221692

RESUMO

Titanium disulfide (TiS2) is a promising anode material for sodium-ion batteries due to its high theoretical capacity, but it suffers from severe volume variation and shuttle effect of the intermediate polysulfides. To overcome the drawbacks, herein the successful fabrication of TiS2@N,S-codoped C (denoted as TiS2@NSC) through a chemical vapor reaction between Ti-based metal-organic framework (NH2-MIL-125) and carbon disulfide (CS2) is demonstrated. The C─N bonds enhance the electronic/ionic conductivity of the TiS2@NSC electrode, while the C─S bonds provide extra sodium storage capacity, and both polar bonds synergistically suppress the shuttle effect of polysulfides. Consequently, the TiS2@NSC electrode demonstrates outstanding cycling stability and rate performance, delivering reversible capacities of 418/392 mAh g-1 after 1000 cycles at 2/5 A g-1. Ex situ X-ray photoelectron spectroscopy and transmission electron microscope analyses reveal that TiS2 undergoes an intercalation-conversion ion storage mechanism with the generation of metallic Ti in a deeper sodiation state, and the pristine hexagonal TiS2 is electrochemically transformed into cubic rock-salt TiS2 as a reversible phase with enhanced reaction kinetics upon sodiation/desodiation cycling. The strategy to encapsulate TiS2 in N,S-codoped porous carbon matrices efficiently realizes superior conductivity and physical/chemical confinement of the soluble polysulfides, which can be generally applied for the rational design of advanced electrodes.

7.
Medicine (Baltimore) ; 102(51): e36591, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134118

RESUMO

RATIONALE: Crizotinib has been approved in many countries for the treatment of patients with advanced ROS1-rearranged non-small cell lung cancers (NSCLC). Entrectinib is a ROS1 inhibitor that has been designed to effectively penetrate and remain in the central nervous system (CNS) and has been recommended as first-line therapy. Few reports have precisely described sequential crizotinb followed by entrectinib in patients with ROS1 fusion in later settings. PATIENT CONCERNS: A 56-year-old man with a history of occasional smoking visited our hospital with cough, sputum, and shortness of breath. DIAGNOSIS: He was diagnosed with right lung adenocarcinoma (T4N2M1a, stage IV) after image and histological examination, without EGFR or ALK fusion mutation. INTERVENTIONS: He received three prior lines of therapies, including chemotherapy, nivolumab monotherapy, and paclitaxel plus anlotinib, with progression-free survival (PFS) of 5, 2, and 11.5 months, respectively. Then the patient began to have headaches and dizziness, and brain magnetic resonance imaging showed multiple brain metastases. Next-generation sequencing (NGS) of the biopsy from neck lymph node identified EZR-ROS1 (1.25% abundance). After 2 months of crizotinib (250 mg daily) plus bevacizumab, all pulmonary and brain lesions decreased, but a small liver lesion was discovered. As treatment went on for another 4 months, the liver lesion continued to grow while other lesions kept decreased or stable state. NGS analysis on the peripheral blood found the disappearance of EZR-ROS1 fusion and a new NTRK2 mutation (c.5C>T, p.Ser2Leu, 0.34% abundance) without other targetable molecular alteration. He received entrectinib (600 mg daily) plus bevacizumab and achieved a partial response. After 7 months of therapy, examination revealed progression of brain lesions. OUTCOMES: The patient had a total PFS of 13 months from sequential crizotinib and entrectinib therapy. LESSONS: A ROS1-rearranged NSCLC with CNS metastases responded to sequential tyrosine kinase inhibitors treatment of crizotinb followed by entrectinib. This report has potential implications in guiding decisions for the treatment after crizotinib resistance.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Masculino , Pessoa de Meia-Idade , Bevacizumab/uso terapêutico , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/secundário , Crizotinibe/uso terapêutico , Neoplasias Pulmonares/patologia , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Fígado/patologia
8.
J Colloid Interface Sci ; 651: 919-928, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37579666

RESUMO

Ti2Nb10O29, as one of the most promising anode materials for lithium-ion batteries (LIBs), possesses excellent structural stability during lithiation/delithiation cycling and higher theoretical capacity. However, Ti2Nb10O29 faces some challenges, such as insufficient ion diffusion coefficient and poor electronic conductivity. To overcome these problems, this study investigates the effect of applying nanostructure engineering on Ti2Nb10O29 and the lithium storage behaviors. We successfully synthesized hollow Ti2Nb10O29 nanospheres (h-TNO NSs) via solvothermal method using phenolic resin nanospheres as the template. The effects of using a template or not and the annealing atmospheres on the microstructures of the as-prepared Ti2Nb10O29 are investigated. Different nanostructures (porous Ti2Nb10O29 nanoaggregates (p-TNO NAs) without a template and core-shelled Ti2Nb10O29@C nanospheres (cs-TNO@C NSs)) were formed through annealing in Ar. When examined as anodes for LIBs, the h-TNO NSs electrode with hollow spherical structure displayed a better lithium storage performance. Compared to its counterparts, p-TNO NAs and cs-TNO@C NSs, h-TNO NSs electrode exhibited a higher reversible capacity of 282.5 mAh g-1 at 1C, capacity retention of 79.5% (i.e., 224.6 mAh g-1) after 200 cycles, and a higher rate capacity of 173.1 mAh g-1 at 10C after 600 cycles. The excellent electrochemical performance of h-TNO NSs is attributed to the novel structure. The hollow nanospheres with cavities and thin shells not only exposed more active sites and improved ion diffusion, but also buffered the volume variation upon cycling and facilitated electrolyte penetration. This consequently enhanced the lithium storage performance of the electrode and its high pseudocapacitive contribution (90% at 1.0 mV s-1).

9.
Small ; 19(38): e2302831, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37199134

RESUMO

Titanium dioxide (TiO2 ) is a promising anode material for sodium-ion batteries (SIBs), which suffer from the intrinsic sluggish ion transferability and poor conductivity. To overcome these drawbacks, a facile strategy is developed to synergistically engineer the lattice defects (i.e., heteroatom doping and oxygen vacancy generation) and the fine microstructure (i.e., carbon hybridization and porous structure) of TiO2 -based anode, which efficiently enhances the sodium storage performance. Herein, it is successfully realized that the Si-doping into the MIL-125 metal-organic framework structure, which can be easily converted to SiO2 /TiO2-x @C nanotablets by annealing under inert atmosphere. After NaOH etching SiO2 /TiO2-x @C which contains unbonded SiO2 and chemically bonded SiOTi, thus the lattice Si-doped TiO2-x @C (Si-TiO2-x @C) nanotablets with rich Ti3+ /oxygen vacancies and abundant inner pores are developed. When examined as an anode for SIB, the Si-TiO2-x @C exhibits a high sodium storage capacity (285 mAh g-1 at 0.2 A g-1 ), excellent long-term cycling, and high-rate performances (190 mAh g-1 at 2 A g-1 after 2500 cycles with 95.1% capacity retention). Theoretical calculations indicate that the rich Ti3+ /oxygen vacancies and Si-doping synergistically contribute to a narrowed bandgap and lower sodiation barrier, which thus lead to fast electron/ion transfer coefficients and the predominant pseudocapacitive sodium storage behavior.

10.
ACS Nano ; 17(11): 10665-10676, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37227175

RESUMO

Building 3D electron-conducting scaffolds has been proven to be an effective way to alleviate severe dendritic growth and infinite volume change of sodium (Na) metal anodes. However, the electroplated Na metal cannot completely fill these scaffolds, especially at high current densities. Herein, we revealed that the uniform Na plating on 3D scaffolds is strongly related with the surface Na+ conductivity. As a proof of concept, we synthesized NiF2 hollow nanobowls grown on nickel foam (NiF2@NF) to realize homogeneous Na plating on the 3D scaffold. The NiF2 can be electrochemically converted to a NaF-enriched SEI layer, which significantly reduces the diffusion barrier for Na+ ions. The NaF-enriched SEI layer generated along the Ni backbones creates 3D interconnected ion-conducting pathways and allows for the rapid Na+ transfer throughout the entire 3D scaffold to enable densely filled and dendrite-free Na metal anodes. As a result, symmetric cells composed of identical Na/NiF2@NF electrodes show durable cycle life with an exceedingly stable voltage profile and small hysteresis, particularly at a high current density of 10 mA cm-2 or a large areal capacity of 10 mAh cm-2. Moreover, the full cell assembled with a Na3V2(PO4)3 cathode exhibits a superior capacity retention of 97.8% at a high current of 5C after 300 cycles.

11.
J Colloid Interface Sci ; 641: 366-375, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36940593

RESUMO

Transition metal oxides as potentialanodes of lithium-ion batteries (LIBs) possess high theoretical capacity but suffer from large volume expansion and poor conductivity. To overcome these drawbacks, we designed and fabricated polyphosphazene-coated yolk-shelled CoMoO4 nanospheres, in which polyphosphazene with abundant C/P/S/N species was readily converted into carbon shells and provided P/S/N dopants. This resulted in the formation of P/S/N co-doped carbon-coated yolk-shelled CoMoO4 nanospheres (PSN-C@CoMoO4). The PSN-C@CoMoO4 electrode exhibits superior cycle stability of 439.2 mA h g-1at 1000 mA g-1after 500 cycles and rate capability of 470.1 mA h g-1at 2000 mA g-1. The electrochemical and structural analyses reveal that PSN-C@CoMoO4 with yolk-shell structure, coated with carbon and doped with heteroatom not only greatly enhances the charge transfer rate and reaction kinetics, but also efficiently buffers the volume variation upon lithiation/delithiation cycling. Importantly, the use of polyphosphazene as coating/doping agent can be a general strategy for developing advanced electrode materials.

12.
BMC Pulm Med ; 23(1): 4, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604675

RESUMO

BACKGROUND: Observational studies reported an association between psoriasis and risk of lung cancer. However, whether psoriasis is causally associated with lung cancer is unclear. METHODS: Genetic summary data of psoriasis were retrieved from two independent genome-wide association studies (GWAS). Genetic information of lung cancer was retrieved from GWAS of International Lung Cancer Consortium. A set of quality control steps were conducted to select instrumental tools. We performed two independent two-sample Mendelian randomization (MR) analyses and a meta-analysis based on the two independent MR estimates to assess the causal relationship between psoriasis and lung cancer (LUCA) as well as its subtypes, squamous cell carcinoma (LUSC) and adenocarcinoma (LUAD). RESULTS: Between-SNP heterogeneity was present for most MR analyses, whereas horizontal pleiotropy was not detected for all MR analyses. Multiplicative random-effect inverse variance weighted (IVW-MRE) method was therefore selected as the primary MR approach. Both IVW-MRE estimates from the two independent MR analyses suggested that there was no significant causal relationship between psoriasis and LUCA as well as its histological subtypes. Sensitivity analyses using other four MR methods gave similar results. Meta-analysis of the two IVW-MRE derived MR estimates yielded an odds ratio (OR) of 1.00 (95% CI 0.95-1.06) for LUCA, 1.01 (95% CI 0.93-1.08) for LUSC, and 0.97 (95% CI 0.90-1.06) for LUAD. CONCLUSION: Our results do not support a genetic association between psoriasis and lung cancer and its subtypes. More population-based and experimental studies are warranted to further dissect the complex correlation between psoriasis and lung cancer.


Assuntos
Neoplasias Pulmonares , Psoríase , Humanos , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Psoríase/epidemiologia , Psoríase/genética
13.
mBio ; 14(1): e0263922, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36475771

RESUMO

Fluconazole (FLC) is widely used to prevent and treat invasive fungal infections. However, FLC is a fungistatic agent, allowing clinical FLC-susceptible isolates to tolerate FLC. Making FLC fungicidal in combination with adjuvants is a promising strategy to avoid FLC resistance and eliminate the persistence and recurrence of fungal infections. Here, we identify a new small molecule compound, CZ66, that can make FLC fungicidal. The mechanism of action of CZ66 is targeting the C-4 sterol methyl oxidase, encoded by the ERG251 gene, resulting in decreased content of sterols with the 14α-methyl group and ultimately eliminating FLC tolerance of Candida albicans. CZ66 most likely interacts with Erg251 through residues Glu195, Gly206, and Arg241. Establishing Erg251 as a synergistic lethal target protein of FLC should direct research to identify specific small molecule inhibitors of 14α-methylsterol synthesis and open the way to abolishing fungal FLC tolerance. IMPORTANCE Fluconazole (FLC) tolerance increases the frequency of acquired FLC resistance, and a high FLC tolerance level is associated with persistent candidemia. Multiple functional proteins, such as calcineurin, heat shock protein 90 (Hsp90), and ADP ribosylation factor, are essential for the survival of C. albicans exposed to FLC, but how these factors increase the fungicidal activity of FLC remains to be determined. In this study, we found that 14α-methylsterols replace ergosterol to allow C. albicans to survive FLC, but Erg251 inactivated by CZ66 results in loss of 14α-methylsterol synthesis and cell death of C. albicans treated with FLC. Establishing Erg251 as a synergistic lethal target protein of FLC should direct research to identify specific small molecule inhibitors of 14α-methylsterol synthesis and open the way to abolishing fungal FLC tolerance.


Assuntos
Fluconazol , Fungicidas Industriais , Fluconazol/farmacologia , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Candida albicans/genética , Fungicidas Industriais/farmacologia , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana
14.
Front Genet ; 13: 968376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506325

RESUMO

Background: Previous studies have suggested that patients with lung adenocarcinoma (LUAD) will significantly benefit from epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI). However, many LUAD patients will develop resistance to EGFR-TKI. Thus, our study aims to develop models to predict EGFR-TKI resistance and the LUAD prognosis. Methods: Two Gene Expression Omnibus (GEO) datasets (GSE31625 and GSE34228) were used as the discovery datasets to find the common differentially expressed genes (DEGs) in EGFR-TKI resistant LUAD profiles. The association of these common DEGs with LUAD prognosis was investigated in The Cancer Genome Atlas (TCGA) database. Moreover, we constructed the risk score for prognosis prediction of LUAD by LASSO analysis. The performance of the risk score for predicting LUAD prognosis was calculated using an independent dataset (GSE37745). A random forest model by risk score genes was trained in the training dataset, and the diagnostic ability for distinguishing sensitive and EGFR-TKI resistant samples was validated in the internal testing dataset and external testing datasets (GSE122005, GSE80344, and GSE123066). Results: From the discovery datasets, 267 common upregulated genes and 374 common downregulated genes were identified. Among these common DEGs, there were 59 genes negatively associated with prognosis, while 21 genes exhibited positive correlations with prognosis. Eight genes (ABCC2, ARL2BP, DKK1, FUT1, LRFN4, PYGL, SMNDC1, and SNAI2) were selected to construct the risk score signature. In both the discovery and independent validation datasets, LUAD patients with the higher risk score had a poorer prognosis. The nomogram based on risk score showed good performance in prognosis prediction with a C-index of 0.77. The expression levels of ABCC2, ARL2BP, DKK1, LRFN4, PYGL, SMNDC1, and SNAI2 were positively related to the resistance of EGFR-TKI. However, the expression level of FUT1 was favorably correlated with EGFR-TKI responsiveness. The RF model worked wonderfully for distinguishing sensitive and resistant EGFR-TKI samples in the internal and external testing datasets, with predictive area under the curves (AUC) of 0.973 and 0.817, respectively. Conclusion: Our investigation revealed eight genes associated with EGFR-TKI resistance and provided models for EGFR-TKI resistance and prognosis prediction in LUAD patients.

15.
ACS Appl Mater Interfaces ; 14(43): 48770-48779, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36259606

RESUMO

Herein, a new photocatalyst PdS@UiOS@CZS is successfully synthesized, where thiol-functionalized UiO-66 (UiOS), a metal-organic framework (MOF) material, is used as a host to encapsulate PdS quantum dots (QDs) in its cages, and Cd0.5Zn0.5S (CZS) solid solution nanoparticles (NPs) are anchored on its outer surface. The resultant PdS@UiOS@CZS with an optimal ratio between components displays an excellent photocatalytic H2 evolution rate of 46.1 mmol h-1 g-1 under visible light irradiation (420∼780 nm), which is 512.0, 9.2, and 5.9 times that of pure UiOS, CZS, and UiOS@CZS, respectively. The reason for the significantly enhanced performance is that the encapsulated PdS QDs strongly attract the photogenerated holes into the pores of UiOS, while the photogenerated electrons are effectively migrated to CZS due to the heterojunction effect, thereby effectively suppressing the recombination of charge carriers for further high-efficiency hydrogen production. This work provides an idea for developing efficient photocatalysts induced by hole attraction.

16.
Microb Pathog ; 172: 105765, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087690

RESUMO

An accumulating trend of research demonstrates that diabetic patients are susceptible to skin infections with Candida albicans, but the mechanism still remains unclear. The intense oxidative stress (OS) responses were occurred in the lesion of diabetic mice footpads after C. albicans infection. Localised skin infections would lead to more severe complications while the severity of the condition worsens or the inadequate treatment. Notably, in this study, through the investigation of murine diabetic footpad C. albicans infection model and molecular biotechnology, including histopathological staining, immunofluorescence (IF) staining, quantitative real-time PCR (qPCR), western blot (WB), flow cytometry (FCM), sandwich enzyme-linked immunosorbent assay (ELISA) assays, we found that intense OS responses in the footpad tissue not only mediated the activation of NF-κB protein complex, but also triggered downstream pyroptosis and apoptosis through NLRP3 inflammasome, which is one of the potential reasons for the severe condition of infectious skin injuries in diabetic mice. Caspase-1, a classical signal pathway protein in pyroptosis, could promote pore formation on cell membranes and the release of the cytokine after NLRP3 inflammasome activation. With intense immune-inflammatory responses, the organism also stimulates immune organs such as the spleen and lymph nodes to produce negative feedback regulation and generate CD4+CD25+Foxp3+ Treg cells to rectify the process. Therefore, combined with the results of this work, it is possible to design and screen relevant drugs for NLRP3 inflammasomes as core targets to keep the OS response at a low level in the footpad tissues.


Assuntos
Diabetes Mellitus Experimental , Pé Diabético , Animais , Camundongos , Piroptose/fisiologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Candida albicans/metabolismo , NF-kappa B/metabolismo , Diabetes Mellitus Experimental/complicações , Caspase 1/metabolismo , Estresse Oxidativo/fisiologia , Citocinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo
17.
J Colloid Interface Sci ; 628(Pt B): 477-487, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998470

RESUMO

Photocatalytic hydrogen evolution from water splitting presents an attractive prospect in dealing with the energy crisis, but the low efficiency of charge separation and migration still seriously hinders its further practical application. Here, an acidified boron-doped g-C3N4 (HBCNN) and cobalt porphyrin metal organic frameworks (CoPMOF) self-assembled two-dimensional and two-dimensional (2D/2D) hybrid photocatalyst is fabricated successfully. The resultant HBCNN/CoPMOF with optimum ratio exhibits a superior H2 evolution rate of 33.17 mmol g-1 h-1, which is 3.04 and 100.50 times higher than the single HBCNN and CoPMOF, respectively. It is found that a coordination connection has formed between CoPMOF and HBCNN through Co-N bond, and the interfacial Co-N bond then forms a pseudo-gap in the up-spin channel of electronic states, establishing an electron-hole separation mechanism. It is this electron-hole separation mechanism that contributes to a Z-scheme transport mode of photogenerated carriers, which greatly promotes the photocatalytic H2 production performance of HBCNN/CoPMOF heterostructure. This work may provide an idea for the design of heterojunction to improve the photocatalytic performance by constructing electron-hole separation through interfacial bond.

18.
J Colloid Interface Sci ; 624: 362-369, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35660904

RESUMO

Development of advanced anode material is highly desired in the energy storage field, not only for the current dominant lithium ion battery (LIB), but also for the sodium ion battery (SIB) with high potential in large-scale and low-cost stationary energy storage systems. Herein, we present a sea cucumber-like hybrid (Sb/VOx-CNFs) which integrates Sb and amorphous VOx composite structure into carbon fibers through electrospinning and sequential annealing treatment. With the specific structural and composition advantages brought synergistically by the Sb/VOx composite structure and the carbon fiber skeleton, the as-prepared Sb/VOx-CNFs delivers a high rate capacity and long-cycle life for both Na+ (∼337 mAh g-1 after 1000 cycles at 1 A g-1) and Li+ (∼554 mAh g-1 after 300 cycles at 0.5 A g-1) when applied as anode materials in the assembled SIB and LIB coin cells due to the improved charge transfer, enlarged active sites and enhanced structural stabilities. The practical applicability of Sb/VOx-CNFs is also demonstrated by the assembly and tests of Sb/VOx-CNFs//Na3V2(PO4)3 full cell where the commercial Na3V2(PO4)3 is employed as the cathode material. Importantly, the presented strategy with favorable synergistic effect could provide expansion opportunities for the design of composite structured nanomaterials in the energy storage fields.

19.
J Colloid Interface Sci ; 620: 144-152, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421751

RESUMO

We report the fabrication of well-defined phase-pure Mn2V2O7 hollow microspheres (h-MVO), assembled from the porous plate-like building blocks, via a facile solvothermal method followed by annealing, with the assistance of polyvinylpyrrolidone (PVP) as the structure-regulating agent. The microstructure dependent electrochemical properties of h-MVO as anode materials for lithium ion batteries (LIBs) are investigated, and excellent lithium storage performance is obtained with a reversible capacity of 1707 mAh g-1 after 700 cycles at 0.5 A g-1, revealing that the unique hierarchical framework of the h-MVO microspheres with hollow interiors and porous building blocks could not only accelerate the transport of Li+ ions and electrolyte, but also efficiently suppress the electrode pulverization upon cycling. More importantly, we demonstrate that PVP can be an effective agent to tune the microstructures, which would be promising for the development of high-performance energy storage devices.

20.
J Control Release ; 345: 214-230, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35307508

RESUMO

Mesenchymal stem cell-derived small extracellular vesicles (MSC-EVs) are promising nanotherapeutic agent for pneumonia (bacterial origin, COVID-19), but the optimal administration route and potential mechanisms of action remain poorly understood. This study compared the administration of MSC-EVs via inhalation and tail vein injection for the treatment of acute lung injury (ALI) and determined the host-derived mechanisms that may contribute to the therapeutic effects of MSC-EVs in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells (macrophage cell line) and animal models. Luminex liquid chip and hematoxylin and eosin (HE) staining revealed that, compared with the vehicle control, inhaled MSC-EVs outperformed those injected via the tail vein, by reducing the expression of pro-inflammatory cytokines, increasing the expression of anti-inflammatory cytokine, and decreasing pathological scores in ALI. MSC-EV administration promoted the polarization of macrophages towards a M2 phenotype in vitro and in vivo (via inhalation). RNA sequencing revealed that immune and redox mediators, including TLR4, Arg1, and HO-1, were associated with the activity MSC-EVs against ALI mice. Western blotting and immunofluorescence revealed that correlative inflammatory and oxidative mediators were involved in the therapeutic effects of MSC-EVs in LPS-stimulated cells and mice. Moreover, variable expression of Nrf2 was observed following treatment with MSC-EVs in cell and animal models, and knockdown of Nrf2 attenuated the anti-inflammatory and antioxidant activities of MSC-EVs in LPS-stimulated macrophages. Together, these data suggest that inhalation of MSC-EVs as a noninvasive strategy for attenuation of ALI, and the adaptive regulation of Nrf2 may contribute to their anti-inflammatory and anti-oxidant activity in mice.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Vesículas Extracelulares , Células-Tronco Mesenquimais , Lesão Pulmonar Aguda/terapia , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/uso terapêutico , Antioxidantes , Citocinas/metabolismo , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Lipopolissacarídeos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...