Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 5(11): 1986-2001, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872351

RESUMO

Ammonia has been long recognized as a metabolic waste product with well-known neurotoxic effects. However, little is known about the beneficial function of endogenous ammonia. Here, we show that gut ammonia links microbe nitrogen metabolism to host stress vulnerability by maintaining brain glutamine availability in male mice. Chronic stress decreases blood ammonia levels by altering gut urease-positive microbiota. A representative urease-producing strain, Streptococcus thermophilus, can reverse depression-like behaviours induced by gut microbiota that was altered by stress, whereas pharmacological inhibition of gut ammonia production increases stress vulnerability. Notably, abnormally low blood ammonia levels limit the brain's availability of glutamine, a key metabolite produced by astrocytes that is required for presynaptic γ-aminobutyric acid (GABA) replenishment and confers stress vulnerability through cortical GABAergic dysfunction. Of therapeutic interest, ammonium chloride (NH4Cl), a commonly used expectorant in the clinic, can rescue behavioural abnormalities and GABAergic deficits in mouse models of depression. In sum, ammonia produced by the gut microbiome can help buffer stress in the host, providing a gut-brain signalling basis for emotional behaviour.


Assuntos
Microbioma Gastrointestinal , Camundongos , Masculino , Animais , Microbioma Gastrointestinal/fisiologia , Amônia , Glutamina/metabolismo , Urease/metabolismo , Urease/farmacologia , Astrócitos/metabolismo
2.
Sci Total Environ ; 873: 162438, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842591

RESUMO

The complication of stent implantation is the biggest obstacle to the success of its clinical application. In this study, we developed a combination way of 3D printing and the coating technique for preparation of functional polyurethane stents against stent implantation-induced thrombosis and postoperative infection. SEM, XPS, static water contact angle, and XRD demonstrated that the functional polyurethane stent had a 37 µm-thickness membrane composed of zein nanospheres (250-350 nm). Meanwhile, ZnO nanoparticles were encapsulated in zein nanospheres while heparin was adsorbed on the surface, causing 97.1 ± 6.4 % release of heparin in 120 min (first-order kinetic model) and 62.7 ± 5.6 % release of Zn2+ in 9 days (Korsmeyer-Peppas model). The mechanical analysis revealed that the functional polyurethane stents had about 8.61 MPa and 2.5 MPa tensile strength and bending strength, respectively. The in vitro biological analysis showed that the functional polyurethane stents had good EA.hy926 cells compatibility (97.9 ± 3.8 %), anti-coagulation response (comparable plasma protein, platelet adhesion and suppressed clotting) and sustained antibacterial activities by comparison with the bare polyurethane stent. The preliminary evaluation by rabbit ex vivo carotid artery intervention experiment demonstrated that the functional polyurethane stents could maintain blood circulation under the continuous stresses of blood flow. Meanwhile, the detailed data from the simulated implant infection experiment in vivo showed the functional polyurethane stents could effectively reduce microbial infection by 3-6 times lower and improve fibrosis and macrophage infiltration.


Assuntos
Nanosferas , Trombose , Zeína , Animais , Coelhos , Poliuretanos , Nanosferas/efeitos adversos , Trombose/etiologia , Heparina/farmacologia , Stents/efeitos adversos
3.
Biomater Adv ; 145: 213225, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36527960

RESUMO

Zein is a biocompatible and biodegradable corn protein with promising properties for biomedical applications. It is hydrophobic with the ability to self-assemble in an aqueous medium. It can also form a gel in hydroalcoholic solvents at higher concentrations. Few studies have investigated the biomedical significance of zein gels. Herein, we exploited the injectability and water-responsive increase in stiffness of zein gel to achieve hemostasis by physical blockage of the wound and clot formation. The release of components from the gel further aided blood clotting and gave a higher clot strength than a natural clot, which can prevent rebleeding. Rabbit aortic injury and swine femoral artery injury models were used to evaluate the hemostatic efficacy of the zein gel. Zein gel was effective in both hemostatic models without applying external compression due to an in situ increase in stiffness, while the control (Celox™ Gauze) required external compression at the wound site. The zein gel was easily removed after hemostasis due to hydrophobic self-assembly. Overall, zein gel is proposed as an effective hemostatic product for any wound shape owing to its good shape adaptability and rapid in situ blood-responsive stiffness increase.


Assuntos
Hemostáticos , Zeína , Suínos , Animais , Coelhos , Hemostáticos/farmacologia , Zeína/química , Hemostasia , Géis , Bandagens
4.
Bioact Mater ; 23: 343-352, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36474653

RESUMO

Four-dimensional (4D) printing is a promising technology that provides solutions for compelling needs in various fields. Most of the reported 4D printed systems are based on the temporal shape transformation of printed subjects. Induction of temporal heterogenicity in functions in addition to shape may extend the scope of 4D printing. Herein, we report a 4D printing approach using plant protein (zein) gel inspired by the amyloid fibrils formation mechanism. The printing of zein gel in a specialized layered-Carbopol supporting bath with different water concentrations in an ethanol-water mixture modulates hydrophobic and hydrogen bonding that causes temporal changes in functions. The part of the construct printed in a supporting bath with higher water content exhibits higher drug loading, faster drug release and degradation than those printed in the supporting bath with lower water content. Tri-segment conduit and butterfly-shaped construct with two asymmetrical wings are printed using this system to evaluate biomedical function as nerve conduit and drug delivery system. 4D printed conduits are also effective as a drug-eluting urethral stent in the porcine model. Overall, this study extends the concept of 4D printing beyond shape transformation and presents an approach of fabricating specialized baths for 4D printing that can also be extended to other materials to obtain 4D printed medical devices with translational potential.

5.
Brain Behav Immun ; 109: 23-36, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36581303

RESUMO

Synapse loss in medial prefrontal cortex (mPFC) has been implicated in stress-related mood disorders, such as depression. However, the exact effect of synapse elimination in the depression and how it is triggered are largely unknown. Through repeated longitudinal imaging of mPFC in the living brain, we found both presynaptic and postsynaptic components were declined, together with the impairment of synapse remodeling and cross-synaptic signal transmission in the mPFC during chronic stress. Meanwhile, chronic stress also induced excessive microglia phagocytosis, leading to engulfment of excitatory synapses. Further investigation revealed that the elevated complement C3 during the stress acted as the tag of synapses to be eliminated by microglia. Besides, chronic stress induced a reduction of the connectivity between the mPFC and neighbor regions. C3 knockout mice displayed significant reduction of synaptic pruning and alleviation of disrupted functional connectivity in mPFC, resulting in more resilience to chronic stress. These results indicate that complement-mediated excessive microglia phagocytosis in adulthood induces synaptic dysfunction and cortical hypo-connectivity, leading to stress-related behavioral abnormality.


Assuntos
Microglia , Derrota Social , Camundongos , Animais , Sinapses , Camundongos Knockout , Plasticidade Neuronal
6.
Sci Adv ; 8(48): eabn2496, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459549

RESUMO

Long noncoding RNAs (lncRNAs) are involved in various biological processes and implicated in the regulation of neuronal activity, but the potential role of lncRNAs in depression remains largely unknown. Here, we identified that lncRNA Gm2694 was increased in the medial prefrontal cortex (mPFC) of male mice subjected to chronic social defeat stress (CSDS). The down-regulation of Gm2694 in the mPFC alleviated CSDS-induced depressive-like behaviors through enhanced excitatory synaptic transmission. Furthermore, we found that Gm2694 preferentially interacted with the carboxyl-terminal domain of 78-kilodalton glucose-regulated protein (GRP78), which abrogated GRP78 function and disrupted endoplasmic reticulum homeostasis, resulting in a reduction of the surface expression of AMPA receptors (AMPARs). Overexpression of GRP78 in the mPFC promoted the surface expression of AMPARs and attenuated the CSDS-induced depressive-like behaviors of mice. Together, our results unraveled a previously unknown role of Gm2694 in regulating endoplasmic reticulum homeostasis and excitatory synaptic transmission in depression.


Assuntos
Doença Enxerto-Hospedeiro , RNA Longo não Codificante , Masculino , Camundongos , Animais , Chaperona BiP do Retículo Endoplasmático , RNA Longo não Codificante/genética , Retículo Endoplasmático , Homeostase , Regulação para Baixo , Receptores de AMPA/genética
7.
Int J Biol Macromol ; 205: 110-117, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35149100

RESUMO

Trauma-related excessive bleeding is one of the leading causes of death. Chitosan (CS) sponges have unique advantages in the treatment of massive bleeding, but their application is limited by poor stability and toxic crosslinking agent. In this work, chitosan/polyvinylpyrrolidone/zein (CS/PVP/Zein) sponges with macroporous structure were prepared, which exhibited rapid water absorption capacity and water-triggered expanding property with low cytotoxicity and low hemolysis ratio. In vitro blood coagulation experiments showed that CS/PVP/Zein sponges could clot blood significantly faster than commercial surgical gauze. Further investigation of the hemostatic mechanism suggested that the CS/PVP/Zein sponges could accelerate coagulation by promoting attachment of erythrocytes, activation of platelets, and rapid plasma protein absorption. Prepared sponges were also found effective in the rat femoral artery transection model to control bleeding. Overall, the CS/PVP/Zein sponges exhibited the potential to control trauma-related hemorrhage.


Assuntos
Quitosana , Hemostáticos , Zeína , Animais , Quitosana/química , Quitosana/farmacologia , Hemostasia , Hemostáticos/química , Povidona/farmacologia , Ratos , Zeína/farmacologia
8.
Sci Total Environ ; 784: 147221, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34088078

RESUMO

Semiconductor nanomaterials not only bring great convenience to peoples lives but also become a potential hazard to human health. The purpose of this study was to evaluate the toxicity of CuS/CdS nanocomposites in hepatocytes and mice liver. The CuS/CdS semiconductor nanocomposites were synthesized by a biomimetic synthesis - ion exchange strategy. Nanosize was confirmed by high-resolution transmission electron microscopy and dynamic light scattering. The composition and physical properties were measured by powder X-ray diffraction, Fourier transform infrared spectra, atomic absorption spectroscopy, thermogravimetry-differential scanning calorimetry and zeta potential analysis. The results revealed that CuS/CdS nanocomposites had 8.7 nm diameter and negative potential. Ion exchange time could adjust the ratio of CuS and CdS in nanocomposites. The toxicological study revealed that CuS/CdS nanocomposites could be internalized into liver cells, inhibited endogenous defense system (e.g. GSH and SOD), induced the accumulation of oxidation products (e.g. ROS, GSSG and MDA), and caused hepatocyte apoptosis. The in vivo experiments in Balb/c mice showed that the experimental dose (4 mg/kg) didn't cause observable changes in mice behavior, physical activity and pathological characteristics, but the continuous accumulation of Cd2+ in the liver and kidney might be responsible for its long-term toxicity.


Assuntos
Nanocompostos , Animais , Cobre , Hepatócitos , Fígado , Camundongos , Nanocompostos/toxicidade , Semicondutores , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
9.
Opt Express ; 29(5): 6794-6809, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726192

RESUMO

In this paper, a characteristic mode rotation (CMR) method has been proposed to design a compact metasurface antenna with a low radar cross section (RCS) in a wideband. In the proposed CMR method, the incident wave dependent complex characteristic currents corresponding to the dominant characteristic modes solved by the characteristic mode method (CMM) are calculated. With the direction of the superposition of the complex characteristic currents orthogonal to that of the incident electric field in the CMR method, the metasurface subarray with wideband polarization conversion characteristic is designed. By arranging the metasurface subarray in a rotation way, a metasurface array with a compact size of 1.28λ0×1.28λ0 is designed for wideband RCS reduction. A miniature circle patch antenna is integrated with the metasurface array to achieve not only good radiation performance but also low observability for the in-band and the out-of-band of the antenna. Simulated and measured results demonstrate that the proposed miniature metasurface antenna designed by the CMR method has a good broadside radiation pattern, a maximal gain of 10.75 dB, and a -10 dB RCS reduction characteristic in the wide band of 6∼20.7 GHz with a fractional band of 110%.

10.
J Mech Behav Biomed Mater ; 113: 104114, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045517

RESUMO

The poor elasticity of wound dressings often leads to wound healing failure due to rupture and fall off. In this study, the composite films of zein and hydrogel poly (acrylic acid) were developed in order to obtain stretchable wound dressing for skin burn repair. The mechanical test revealed that the maximum elongation of break of composite films could reach 349.76% when the mass ratio of zein to poly (acrylic acid) was 1.5. SEM and FTIR analysis demonstrated the good elasticity of composite films might be due to the formation of a dense structure and the strong interaction between zein and poly (acrylic acid). Interestingly, the composite films exhibited great adhesiveness to human finger skin and stretchable ability under strenuous joint exercise. CCK-8 assay and fluorescence staining showed that the composite films and their extract had good cytocompatibility on human foreskin fibroblasts (L929) cells. The in vivo experiment on rat's skin burning model indicated that the composite films could promote wound healing and collagen synthesis by comparison with commercial gauze. It could be concluded that the stretchable composite films of zein and hydrogel poly (acrylic acid) had the potential as the wound dressing.


Assuntos
Queimaduras , Cicatrização , Animais , Bandagens , Queimaduras/terapia , Hidrogéis , Ratos , Pele
11.
Mater Sci Eng C Mater Biol Appl ; 111: 110766, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32279795

RESUMO

Conduit scaffolds have potential applications in tissue engineering as nerve conduits, urological stent and blood vessel graft. Zein is a well-reported biopolymer in tissue engineering and drug delivery systems. Herein, we prepared ciprofloxacin loaded zein conduits using a facile rolling method. Zein conduits (ZCs) were evaluated for physical structure, porosity, bending stiffness, degradation, drug release, in vitro and in vivo antibacterial efficacy and cells toxicity. ZCs showed porous structure with porosity > 60 % and good mechanical strength with bending stiffness of 28.54 N.mm2. Slow enzymatic degradation (87 % in 30 days) was also observed for ZCs. Slow release of ciprofloxacin up to 42 days was observed that could assure prevention of post-implantation infection. In vitro and in vivo antibacterial study verified the short-time and long-time antibacterial efficacy of zein conduits on Gram-positive and Gram-negative bacteria. Live/dead measurement and CCK-8 assay on L929 cells demonstrated good cell compatibility for all zein conduits (>90 % cell viability and cells proliferation in 3 days). Overall, the rolling method could be exploited for preparation of ciprofloxacin loaded zein conduits, which had the potential for tissue engineering applications.


Assuntos
Antibacterianos/química , Ciprofloxacina/química , Zeína/química , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ciprofloxacina/metabolismo , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Força Compressiva , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Masculino , Camundongos , Porosidade , Ratos , Ratos Sprague-Dawley , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Cicatrização/efeitos dos fármacos
12.
J Hazard Mater ; 394: 122547, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32289621

RESUMO

The relationship between sludge organic fraction and its dewaterability is well known in practice. However, the formal study to reveal the underlying reason is limited. To improve understanding of the nature of organic content on sludge dewatering process, this study systematically evaluated the effects of sludge organic content on its dewaterability and revealed the underlying mechanism. Analysis of 10 waste activated sludge (WAS) samples with varying organic contents showed that capillary suction time (CST) increased linearly from 34.90 ± 0.10 s to 104.90 ± 0.30 s (R2 = 0.92, p < 0.01), whereas the solid content of centrifuge cake decreased from 21.23 %±0.45 % to 12.52 %±0.14 % (R2 = 0.89, p < 0.01) when organic fractionincreased from 35.72 % to 61.11 %. These results first confirmed that WAS dewatering performance was negatively correlated to its organic content. Then, the underlying mechanism was revealed by studying the basic physicochemical properties of WAS with various organic content. The results showed that sludge with a higher organic content generally had greater extracellular polymeric substances (EPS) content, lower density and higher negative zeta potential, which hinder the aggregation and flocculation of floc particles. These properties endow the WAS with a higher organic content generally possessed more bound water content, small pores, poorer fluidity, and stronger network strength. These characteristics can hamper the separation of water from sludge cake during dewatering. Based on which, this study discussed the potential of organic fraction as a surrogate of EPS for evaluating WAS dewaterability and indicated the organic fraction can be a useful and strong indicator of WAS dewaterability.


Assuntos
Floculação/efeitos dos fármacos , Compostos Orgânicos/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Água/química , Matriz Extracelular de Substâncias Poliméricas/química , Compostos Orgânicos/análise , Esgotos/análise
13.
Int J Pharm ; 579: 119185, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32112929

RESUMO

In this study, gastro-retentive porous floating tablets of captopril based on zein are reported using l-menthol as a porogen. Tablets were prepared by the direct compression method. Removing of l-menthol through sublimation process generated pores in tablets, which decreased the density to promote floating over gastric fluid. Prepared tablets showed no floating lag time and prolong total floating time (>24 h). Drug release was found dependent upon porosity of tablets, an increase in porosity of tablets resulted in increased drug release, so it can be tuned by varying concentration of l-menthol. In addition to floating and sustained release properties, porous tablets showed robust mechanical behavior in wet conditions, which can enable them to withstand real gastric environment stress. In vivo studies using New Zealand rabbits also confirmed the prolonged gastric retention (24 h) and plasma drug concentration-time profile showed sustained release of captopril with higher Tmax and MRT as compared to marketed immediate-release tablets. Overall, it was concluded that effective gastric retention can be achieved using porous zein tablets using l-menthol as a porogen.


Assuntos
Captopril/química , Captopril/farmacocinética , Mucosa Gástrica/metabolismo , Comprimidos/química , Zeína/química , Animais , Captopril/sangue , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos/efeitos dos fármacos , Mentol/química , Porosidade , Coelhos
14.
J Mech Behav Biomed Mater ; 103: 103533, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31747624

RESUMO

To overcome the mechanical drawback of bioink, we proposed a supporter model to enhance the mechanical strength of bioprinted 3D constructs, in which a unit-assembly idea was involved. Based on Computed Tomography images of critical-sized rabbit bone defect, the 3D re-construction was accomplished by a sequenced process using Mimics 17.0, BioCAM and BioCAD software. 3D constructs were bioprinted using polycaprolactone (PCL) ink for the outer supporter under extrusion mode, and cell-laden tricalcium phosphate (TCP)/alginate bioink for the inner filler under air pressure dispensing mode. The relationship of viscosity of bioinks, 3D bioprinting pressure, TCP/alginate ratio and cell survival were investigated by the shear viscosities analysis, live/dead cell test and cell-counting kit 8 measurement. The viscosity of bioinks at 1.0 s-1-shear rate could be adjusted within the range of 1.75 ±â€¯0.29 Pa·s to 155.65 ±â€¯10.86 Pa·s by changing alginate concentration, corresponding to 10 kPa-130 kPa of printing pressure. This design with PCL supporter could significantly enhance the compressive strength and compressive modulus of standardized 3D mechanical testing specimens up to 2.15 ±â€¯0.14 MPa to 2.58 ±â€¯0.09 MPa, and 42.83 ±â€¯4.75 MPa to 53.12 ±â€¯1.19 MPa, respectively. Cells could maintain the high viability (over 80%) under the given printing pressure but cell viability declined with the increase of TCP content. Cell survival after experiencing 7 days of cell culture could be achieved when the ratio of TCP/alginate was 1 : 4. All data supported the feasibility of the supporter and unit-assembly model to enhance mechanical properties of bioprinted 3D constructs.


Assuntos
Alginatos , Bioimpressão , Animais , Fosfatos de Cálcio , Sobrevivência Celular , Impressão Tridimensional , Coelhos , Alicerces Teciduais
15.
Sci Total Environ ; 686: 869-877, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31200307

RESUMO

Jarosites are secondary iron-hydroxyl-sulfate minerals and widely occur in bioleaching, acid mine drainage, and acid sulfate soil environments. Anaerobic reductive dissolution of jarosites is yet to be methodically examined. In this study, we explored the bio-dissolution of jarosites by Acidithiobacillus ferrooxidans (At. ferrooxidans) by using hydrogen in batch experiments. After bio-dissolution by At. ferrooxidans for 22 d, ferrous ion concentrations reached 10.07 mM (biologically produced jarosites), 7.68 mM (potassium jarosite), and 1.45 mM (lead jarosite). Strengthening the dissolved jarosites by decreasing the initial pH (pH < 2.0) or by adding citric acid (1, 5, and 10 mM) was inefficient for bio-dissolution owing to restricted cellular activity. The pathways of bio-dissolution should include direct contact bio-dissolution and indirect bio-dissolution and relate to the solubility of jarosites in a bio-dissolution system. The results demonstrate that anaerobic reductive bio-dissolution of jarosites by At. ferrooxidans using hydrogen shows potential. This study also provides opportunities to contribute to the development of the bioleaching field via the aerobic/anaerobic cycle using a single strain to control and reuse jarosites in situ.


Assuntos
Acidithiobacillus/metabolismo , Compostos Férricos/metabolismo , Sulfatos/metabolismo , Elétrons , Compostos Ferrosos , Hidrogênio/metabolismo , Ferro/metabolismo , Minerais/metabolismo , Mineração , Oxirredução
16.
Sci Total Environ ; 656: 140-149, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30504016

RESUMO

This study investigated the effect of nitrogen (N) and phosphorous (P) stress on the production of DHA or EPA and total fatty acids (TFAs) in the marine microalga Tisochrysis lutea and the freshwater microalga Monodus subterraneus. Five N or P starvation/limitation conditions (N sufficient and P limited, N sufficient and P starved, N starved and P sufficient, N starved and P limited, and N and P starved) and one N and P sufficient condition (control) were studied. The results demonstrated that the proportion of DHA or EPA among TFAs and production in the microalgae suspensions decreased (57%, 73% for N stress and 18%, 51% for P stress, respectively) under N or P stress in both microalgae compared with the N and P sufficient group. Differently, DHA dry weight content of T. lutea decreased significantly, and EPA dry weight content of M. subterraneus decreased slightly under N starved conditions. Clear differences in TFA content/production and the relationship between TFA and DHA or EPA production/content and CO2 fixation were observed between the two microalgae. These results give a new sight on the difference between marine microalgae and freshwater microalgae. Meanwhile, it gave a potential application to produce DHA or EPA and TFA combining with CO2 fixation by these microalgae.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Microalgas/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Haptófitas/metabolismo , Nitrogênio/deficiência , Nutrientes/deficiência , Nutrientes/metabolismo , Fósforo/deficiência , Estramenópilas/metabolismo , Estresse Fisiológico
17.
Sci Total Environ ; 643: 1065-1073, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189523

RESUMO

The combined use of coagulant and flocculant can achieve excellent dewatering performance. In this study, we investigated the impact of dosing order of the coagulant and flocculant on sludge dewatering performance. The results showed that capillary suction time (CST) values during the coagulation-flocculation process decreased 20-25% compared to those during the flocculation-coagulation process using the same doses of additives. Moisture content of the sludge during the coagulation-flocculation process was lower. The dosing order of coagulants and flocculants during the conditioning process was clearly important for sludge dewatering, and the coagulant should be dosed before the flocculant. Furthermore, a mechanism for the different dewatering performance was proposed: larger agglomerated and destabilized colloid particles formed, and more bound water was released into the sludge bulk solution during the coagulation-flocculation process, compared with the flocculation-coagulation process, which resulted in better dewatering performance, as reflected in the CST value and moisture content of the sludge cake. These results enable a better understanding of combined conditioning with coagulants and flocculants on sludge dewatering.

18.
Bioresour Technol ; 267: 650-656, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30059945

RESUMO

The effects of pore sizes on the in-situ utilization of synthesis gas (syngas, H2 and CO) mixed culture fermentation (MCF) in the hollow-fiber membrane biofilm reactor (HfMBR) are not clear. Thus, the ultrafiltration (R1) and microfiltration (R2) HfMBRs were constructed. Syngas was totally consumed within the formed biofilm in R1; contrarily, it accumulated notably in R2. In the batch mode of R1 and R2, volatile fatty acids (VFAs) of acetate, butyrate and caproate were the main metabolites, but the production rate of total VFA in R1 (61.9 mmol-C/(L·d)) was higher than that of R2 (27.6 mmol-C/(L·d)). In the continuous mode, the R1 performance was much better than that of R2, and the biofilm in R2 was even washed out. Furthermore, Clostridium (30.0%) was the main genus in the enriched biofilm of R1, which converted syngas to VFAs. Thus, the ultrafiltration membrane shall be the suitable candidate for syngas MCF.


Assuntos
Biofilmes , Fermentação , Reatores Biológicos , Clostridium , Ultrafiltração
19.
Bioresour Technol ; 264: 17-23, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29783127

RESUMO

The inhibition of acetate under acidic pH is an ideal way to reduce methanogenesis in mesophilic mixed culture fermentation (MCF). However, the effects of acetate concentration and acidic pH on methanogenesis remain unclear. Besides, although hydrogenotrophic methanogens can be suitable targets in MCF, they are generally ignored. Therefore, we intentionally enriched hydrogenotrophic methanogens and found that free acetic acid (FAA, x) concentration and specific methanogenic activity (SMA, y) were correlated according to the equation: y = 0.86 × 0.31/(0.31 + x) (R2 = 0.909). The SMA was decreased by 50% and 90% at the FAA concentrations of 0.31 and 2.36 g/L, respectively. The coenzyme M concentration and relative electron transport activity agreed well with the FAA concentration. Moreover, the methanogenic activity could not be recovered when the FAA concentration exceeded 0.81 g/L. These findings indicated that neither acetate nor acidic pH, but FAA was the key factor to inhibit methanogenesis in MCF.


Assuntos
Ácido Acético , Metano/biossíntese , Crescimento Quimioautotrófico , Euryarchaeota , Fermentação
20.
J Biomed Mater Res A ; 106(2): 606-613, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28960906

RESUMO

Given the inadequacies of existing clinic tracking strategies, such as isotopic tracer techniques, one of the major thrusts in protein-based tissue engineering substitutes prior to use in clinic is to develop a safe technique that can effectively track their degradation in vivo. Keeping in view the possible application of a natural polymer, zein as a novel bone substitute, with the advantages of good bio-compatibility, bio-degradability and outstanding mechanical properties, we attempted here to construct a HPLC-MS/MS method to track the in vivo degradation of zein porous scaffold. Histological observation and immunohistochemistry analysis using the intramuscular implantation model of rats clearly indicated that zein porous scaffold has certain osteoinductive ability. More importantly, HPLC-MS/MS detected the changes of amino acids levels in plasma and different organs after the implantation of scaffolds. With these findings, it could be concluded that HPLC-MS/MS might be a potential method to track the in vivo degradation of protein-based tissue engineering substitutes. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 606-613, 2018.


Assuntos
Materiais Biocompatíveis/química , Espectrometria de Massas em Tandem/métodos , Zeína/química , Aminoácidos/análise , Animais , Substitutos Ósseos/química , Coristoma/patologia , Cromatografia Líquida de Alta Pressão , Feminino , Masculino , Osteogênese , Implantação de Prótese , Ratos Sprague-Dawley , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...