Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(9): 11691-11702, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812350

RESUMO

An anionic redox reaction is an extraordinary method for obtaining high-energy-density cathode materials for sodium-ion batteries (SIBs). The commonly used inactive-element-doped strategies can effectively trigger the O redox activity in several layered cathode materials. However, the anionic redox reaction process is usually accompanied by unfavorable structural changes, large voltage hysteresis, and irreversible O2 loss, which hinders its practical application to a large extent. In the present work, we take the doping of Li elements into Mn-based oxide as an example and reveal the local charge trap around the Li dopant will severely impede O charge transfer upon cycling. To overcome this obstacle, additional Zn2+ codoping is introduced into the system. Theoretical and experimental studies show that Zn2+ doping can effectively release the charge around Li+ and homogeneously distribute it on Mn and O atoms, thus reducing the overoxidation of O and improving the stability of the structure. Furthermore, this change in the microstructure makes the phase transition more reversible. This study aimed to provide a theoretical framework for further improve the electrochemical performance of similar anionic redox systems and provide insights into the activation mechanism of the anionic redox reaction.

2.
Opt Express ; 29(14): 22714-22731, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34266029

RESUMO

The microstructures on a diamond surface have attracted extensive attention in microelectronics, ultra-precision machining tools, and optical elements, etc. In this work, microgrooves were fabricated on a single-crystal diamond surface using ultraviolet nanosecond or infrared picosecond laser pulses. The surface and internal morphologies of the microgrooves were characterized. The chemical composition and phase transition of the diamond after laser irradiation were analyzed. Furthermore, the ablation threshold, ablation rate, and material removal rate of the diamond processed by nanosecond or picosecond lasers were also calculated. In addition, the temperature distributions of the diamond ablated by nanosecond or picosecond lasers were simulated. Finally, the material removal mechanisms of a single-crystal diamond processed by nanosecond or picosecond lasers were revealed. This work is expected helpful to provide a guidance for the laser fabrication of microstructures on diamond.

3.
J Am Soc Mass Spectrom ; 29(7): 1365-1375, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29633222

RESUMO

Sensitivity is generally an issue in bioassays of prostaglandins and their synthetic analogs due to their extremely low concentration in vivo. To improve the ionization efficiency of limaprost, an oral prostaglandin E1 (PGE1) synthetic analog, we investigated a charge reversal derivatization strategy in electrospray ionization mass spectrometry (ESI-MS). We established that the cholamine derivative exhibits much greater signal intensity in the positive-ion mode compared with limaprost in the negative ion mode. Collision-induced dissociation (CID) involved exclusive neutral mass loss and positive charge migration to form stable cationic product ions with the positive charge on the limaprost residue rather than on the modifying group. This has the effect of maintaining the efficiency and specificity of multiple reaction monitoring (MRM) and avoiding cross talk. CID fragmentation patterns of other limaprost derivatives allowed us to relate the dissociation tendency of different neutral leaving groups to an internal energy distribution scale based on the survival yield method. Knowledge of the energy involved in the production of stabilized positive ions will potentially assist the selection of suitable derivatization reagents for the analysis of a wide variety of lipid acids. Graphical Abstract ᅟ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...