Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(8): e103953, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25101636

RESUMO

Catadromous fishes migrate between ocean and freshwater during particular phases of their life cycle. The dramatic environmental changes shape their physiological features, e.g. visual sensitivity, olfactory ability, and salinity tolerance. Anguilla marmorata, a catadromous eel, migrates upstream on dark nights, following the lunar cycle. Such behavior may be correlated with ontogenetic changes in sensory systems. Therefore, this study was designed to identify changes in spectral sensitivity and opsin gene expression of A. marmorata during upstream migration. Microspectrophotometry analysis revealed that the tropical eel possesses a duplex retina with rod and cone photoreceptors. The λmax of rod cells are 493, 489, and 489 nm in glass, yellow, and wild eels, while those of cone cells are 508, and 517 nm in yellow, and wild eels, respectively. Unlike European and American eels, Asian eels exhibited a blue-shifted pattern of rod photoreceptors during upstream migration. Quantitative gene expression analyses of four cloned opsin genes (Rh1f, Rh1d, Rh2, and SWS2) revealed that Rh1f expression is dominant at all three stages, while Rh1d is expressed only in older yellow eel. Furthermore, sequence comparison and protein modeling studies implied that a blue shift in Rh1d opsin may be induced by two known (N83, S292) and four putative (S124, V189, V286, I290) tuning sites adjacent to the retinal binding sites. Finally, expression of blue-shifted Rh1d opsin resulted in a spectral shift in rod photoreceptors. Our observations indicate that the giant mottled eel is color-blind, and its blue-shifted scotopic vision may influence its upstream migration behavior and habitat choice.


Assuntos
Anguilla/fisiologia , Migração Animal , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Visão Ocular/fisiologia , Animais , Visão de Cores , Ecossistema , Regulação da Expressão Gênica no Desenvolvimento , Opsinas/química , Opsinas/genética , Opsinas/metabolismo , Filogenia , Rodopsina/química , Rodopsina/genética , Rodopsina/metabolismo , Especificidade da Espécie
2.
Appl Biochem Biotechnol ; 172(2): 933-50, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24122708

RESUMO

Paenibacillus macerans TKU029 can produce exopolysaccharides (EPSs; 3.46 g/L) and a biosurfactant (1.78 g/L) in a medium with 2 % (w/v) squid pen powder as the sole carbon/nitrogen source. The biosurfactant can reduce the surface tension of water from 72.30 to 35.34 mN/m at a concentration of 2.76 g/L and reach an emulsification index of 56 % after a 24-h reaction with machine oil. This biosurfactant is stable at 121 °C for 20 min, over a pH range from 3 to 11, and in <5 % salt solutions. It also shows significant antimicrobial activity, which remains active after treatment at 121 °C and at pH values from 4 to 10, against Escherichia coli BCRC13086, Staphylococcus aureus BCRC10780, Fusarium oxysporum BCRC32121 and Aspergillus fumigatus BCRC30099. Furthermore, human skin shows from 37.3 to 44.3 % hydration after being treated with TKU029 EPSs for 180 min. These results imply that EPSs and the biosurfactant from this strain have potential in cosmetics, for removal of oil contamination, and as antimicrobial agents.


Assuntos
Anti-Infecciosos/farmacologia , Paenibacillus/metabolismo , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/farmacologia , Tensoativos/farmacologia , Bactérias/efeitos dos fármacos , Emulsões/química , Feminino , Fungos/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Micelas , Testes de Sensibilidade Microbiana , Paenibacillus/efeitos dos fármacos , Paenibacillus/crescimento & desenvolvimento , Salinidade , Tensão Superficial/efeitos dos fármacos , Temperatura , Fatores de Tempo , Adulto Jovem
3.
BMC Biotechnol ; 13: 71, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24004614

RESUMO

BACKGROUND: As a strong fermentator, Saccharomyces cerevisiae has the potential to be an excellent host for ethanol production by consolidated bioprocessing. For this purpose, it is necessary to transform cellulose genes into the yeast genome because it contains no cellulose genes. However, heterologous protein expression in S. cerevisiae often suffers from hyper-glycosylation and/or poor secretion. Thus, there is a need to genetically engineer the yeast to reduce its glycosylation strength and to increase its secretion ability. RESULTS: Saccharomyces cerevisiae gene-knockout strains were screened for improved extracellular activity of a recombinant exocellulase (PCX) from the cellulose digesting fungus Phanerochaete chrysosporium. Knockout mutants of 47 glycosylation-related genes and 10 protein-trafficking-related genes were transformed with a PCX expression construct and screened for extracellular cellulase activity. Twelve of the screened mutants were found to have a more than 2-fold increase in extracellular PCX activity in comparison with the wild type. The extracellular PCX activities in the glycosylation-related mnn10 and pmt5 null mutants were, respectively, 6 and 4 times higher than that of the wild type; and the extracellular PCX activities in 9 protein-trafficking-related mutants, especially in the chc1, clc1 and vps21 null mutants, were at least 1.5 times higher than the parental strains. Site-directed mutagenesis studies further revealed that the degree of N-glycosylation also plays an important role in heterologous cellulase activity in S. cerevisiae. CONCLUSIONS: Systematic screening of knockout mutants of glycosylation- and protein trafficking-associated genes in S. cerevisiae revealed that: (1) blocking Golgi-to-endosome transport may force S. cerevisiae to export cellulases; and (2) both over- and under-glycosylation may alter the enzyme activity of cellulases. This systematic gene-knockout screening approach may serve as a convenient means for increasing the extracellular activities of recombinant proteins expressed in S. cerevisiae.


Assuntos
Celulases/metabolismo , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Celulases/genética , Celulose/metabolismo , Etanol/metabolismo , Proteínas Fúngicas/genética , Técnicas de Inativação de Genes , Glicosilação , Mutagênese Sítio-Dirigida , Phanerochaete/enzimologia , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...