Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1139447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601360

RESUMO

Satellite RNAs (satRNAs) are molecular parasites that depend on their non-homologous helper viruses (HVs) for essential biological functions. While there are multiple molecular and phylogenetic studies on satRNAs, there is no experimental evolution study on how satRNAs may evolve in common infection conditions. In this study, we serially passaged the Bamboo mosaic virus (BaMV) associated-satRNA (satBaMV) under conditions in which satBaMV either coinfects an uninfected host plant, Nicotiana benthamiana, with BaMV or superinfects a transgenic N. benthamiana expressing the full-length BaMV genome. Single-nucleotide polymorphisms (SNPs) of satBaMV populations were analyzed by deep sequencing. Forty-eight SNPs were identified across four different experimental treatments. Most SNPs are treatment-specific, and some are also ephemeral. However, mutations at positions 30, 34, 63, and 82, all located at the 5' untranslated region (UTR), are universal in all treatments. These universal SNPs are configured into several haplotypes and follow different population dynamics. We constructed isogenic satBaMV strains only differing at positions 30 and 82 and conducted competition experiments in protoplasts and host plants. We found that the haplotype that reached high frequency in protoplasts and inoculation leaves also exhibited poor dissemination to systemic leaves and vice versa, thus suggesting an apparent trade-off between local replication and long-distance dissemination. We posit that the trade-off is likely caused by antagonistic pleiotropy at the 5' UTR. Our findings revealed a hitherto under-explored connection between satRNA genome replication and movement within a host plant. The significance of such a connection during satRNA evolution warrants a more thorough investigation.

2.
iScience ; 23(6): 101186, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32504874

RESUMO

How the noisy expression of regulatory proteins affects timing of intracellular events is an intriguing fundamental problem that influences diverse cellular processes. Here we use the bacteriophage λ to study event timing in individual cells where cell lysis is the result of expression and accumulation of a single protein (holin) in the Escherichia coli cell membrane up to a critical threshold level. Site-directed mutagenesis of the holin gene generated phage variants that vary in their lysis times from 30 to 190 min. Observation of the lysis times of single cells reveals an intriguing finding-the noise in lysis timing first decreases with increasing lysis time to reach a minimum and then sharply increases at longer lysis times. A mathematical model with stochastic expression of holin together with dilution from cell growth was sufficient to explain the non-monotonic noise profile and identify holin accumulation thresholds that generate precision in lysis timing.

3.
J Theor Biol ; 446: 137-148, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29391172

RESUMO

Taking an ecological perspective, this paper reports theoretical and empirical results concerning fatal bacterial infections of adult insects. Two models, each combining deterministic and stochastic elements, characterize how the pathogen's dynamics might govern an infected host's mortality rate. We analyze the models in detail for exponential pathogen growth, and apply them to observed insect mortality when the pathogen's growth is unregulated. We then allow bacteriophage to generate fluctuations in the within-host pathogen density; we demonstrate that only one of our models matches host mortality rates when pathogen growth is regulated by phage. We generalize our results on mortality hazard of individual hosts to analyze how random duration of the infectious period can combine with probabilistic transmission events to affect between-host transmission.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Infecções/metabolismo , Modelos Biológicos , Animais , Drosophila , Dinâmica Populacional
4.
Front Microbiol ; 8: 886, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588562

RESUMO

Bamboo mosaic virus (BaMV), a plant potexvirus, has been found only in infected bamboo species. It is frequently associated with a large, linear single-stranded satellite RNA (satBaMV) that encodes a non-structural protein. Decades of collecting across a wide geographic area in Asia have accumulated a sizable number of BaMV and satBaMV isolates. In this study, we reconstructed the BaMV phylogeny and satBaMV phylogeny with partial coat protein gene sequences and partial genomic sequences, respectively. The evolutionary relationships allowed us to infer the phylogeography of BaMV and satBaMV on the Asian continent and its outlying islands. The BaMV phylogeny suggests that the BaMV isolates from Taiwan, unsurprisingly, are most likely derived from China. Interestingly, the newly available satBaMV isolates from China were found to be most closely related to the previously established Clade III, which is found in India. The general pattern of clustering along the China/India and Taiwan divide led us to hypothesize that the Taiwan Strait has been a physical barrier to gene flow in the past evolutionary history of both BaMV and satBaMV. Lastly, cophylogeny analyses revealed a complex association pattern between BaMV and satBaMV isolates from China. In general, closely related BaMV sequences tend to carry closely related satBaMV sequences as well; but instances of mismatching with distantly related satBaMV isolates were also found. We hypothesize plausible scenarios of infection and superinfection of bamboo hosts that may be responsible for the observed association pattern. However, a more systematic sampling throughout the geographic distribution of various bamboo species is needed to unambiguously establish the origin, movement, and evolution of BaMV and satBaMV.

5.
J Theor Biol ; 397: 33-42, 2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26921466

RESUMO

Groups of chronically infected reservoir-hosts contaminate resource patches by shedding a parasite׳s free-living stage. Novel-host groups visit the same patches, where they are exposed to infection. We treat arrival at patches, levels of parasite deposition, and infection of the novel host as stochastic processes, and derive the expected time elapsing until a host-jump (initial infection of a novel host) occurs. At stationarity, mean parasite densities are independent of reservoir-host group size. But within-patch parasite-density variances increase with reservoir group size. The probability of infecting a novel host declines with parasite-density variance; consequently larger reservoir groups extend the mean waiting time for host-jumping. Larger novel-host groups increase the probability of a host-jump during any single patch visit, but also reduce the total number of visits per unit time. Interaction of these effects implies that the waiting time for the first infection increases with the novel-host group size. If the reservoir-host uses resource patches in any non-uniform manner, reduced spatial overlap between host species increases the waiting time for host-jumping.


Assuntos
Reservatórios de Doenças/parasitologia , Meio Ambiente , Parasitos/fisiologia , Doenças Parasitárias em Animais/parasitologia , Acacia/parasitologia , Algoritmos , Animais , Interações Hospedeiro-Parasita , Modelos Biológicos , Doenças dos Macacos/parasitologia , Doenças dos Macacos/transmissão , Nematoides/patogenicidade , Nematoides/fisiologia , Infecções por Nematoides/parasitologia , Infecções por Nematoides/transmissão , Papio cynocephalus/parasitologia , Parasitos/patogenicidade , Doenças Parasitárias em Animais/transmissão , Doenças das Plantas/parasitologia , Densidade Demográfica , Processos Estocásticos , Virulência
6.
Evolution ; 69(7): 1678-89, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26149959

RESUMO

Migration is a primary force of biological evolution that alters allele frequencies and introduces novel genetic variants into populations. Recent migration has been proposed as the cause of the emergence of many infectious diseases, including those carried by blacklegged ticks in North America. Populations of blacklegged ticks have established and flourished in areas of North America previously thought to be devoid of this species. The recent discovery of these populations of blacklegged ticks may have resulted from either in situ growth of long-established populations that were maintained at very low densities or by migration and colonization from established populations. These alternative evolutionary hypotheses were investigated using Bayesian phylogeographic approaches to infer the origin and migratory history of recently detected blacklegged tick populations in the Northeastern United States. The data and results indicate that newly detected tick populations are not the product of in situ population growth from a previously established population but from recent colonization resulting in a geographic range expansion. This expansion in the geographic range proceeded primarily through progressive and local migration events from southern populations to proximate northern locations although long-distance migration events were also detected.


Assuntos
Distribuição Animal , Vetores Aracnídeos/fisiologia , Fluxo Gênico , Ixodes/fisiologia , Animais , Vetores Aracnídeos/genética , Teorema de Bayes , Ixodes/genética , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Dados de Sequência Molecular , New York , Filogenia , Filogeografia , Crescimento Demográfico , Análise de Sequência de DNA
7.
PLoS One ; 9(9): e108015, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25275532

RESUMO

Satellite RNAs (satRNAs) are subviral agents that depend on cognate helper viruses for genome replication and encapsidation. Their negative impacts on helper viruses have been exploited to control plant viral diseases. SatBaMV is a commonly found satRNA associated with Bamboo mosaic virus (BaMV) that infects diverse bamboo species in the field. To investigate the genetic diversity and evolution of satRNAs, we examined seven satBaMV populations derived from five bamboo species and cultivars from Taiwan, China, and India and one from the greenhouse. We found 3 distinct clades among the seven populations. Clade I is consisted of all satBaMV isolates, except for those from Dendrocalamus latiflorus in Taiwan and Bambusa vulgaris in India, which belong to Clades II and III, respectively. Interestingly, nucleotide diversity was lower for Clade I than II and III. However, the nucleotide diversity did not seem to depend on bamboo species or geographic location. Our population genetic analyses revealed the presence of excessive low-frequency polymorphic sites, which suggests that the satBaMV population was under purifying selection and/or population expansion. Further analysis of P20, the only satBaMV gene that encodes a non-structural protein involved in the long-distance movement of satBaMV, showed evidence of purifying selection. Taken together, our results suggest that purifying selection against defective P20 protein is responsible at least in part for the evolution of the satBaMV genome.


Assuntos
Bambusa/virologia , Evolução Molecular , Variação Genética , Vírus do Mosaico/genética , RNA Satélite/genética , RNA Viral/genética , Clonagem Molecular , Genoma Viral/genética , Geografia , Vírus do Mosaico/isolamento & purificação , Nucleotídeos/genética , Fenótipo , Filogenia , Doenças das Plantas/virologia , Polimorfismo Genético , Proteínas Virais/metabolismo
8.
Bacteriophage ; 4(4): e964081, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26713221

RESUMO

We isolated 6 phages from 2 environmental water sources and assessed their ability to treat Pseudomonas aeruginosa infection of Drosophila melanogaster. We found all 6 phages were able to significantly increase mean survival time (MST) of infected D. melanogaster. Although phage traits, such as adsorption rate, burst size, and lysis time, varied significantly among these phages, none of the traits correlated significantly with MST. Phage growth rate determined in vitro, however, was found to be significantly correlated with MST. Overall, our study shows that infected D. melanogaster can be used as a model system to test the therapeutic efficacy of phages. In addition, a more comprehensive characteristic, like the in vitro growth rate, seems to be a better indicator in predicting therapeutic success than constituent traits like the adsorption rate, burst size, or lysis time.

9.
Microbiology (Reading) ; 159(Pt 3): 507-514, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23329676

RESUMO

The capsids of ssRNA phages comprise a single copy of an ~45 kDa maturation protein that serves to recognize the conjugative pilus as receptor, to protect the ends of the viral RNA and also to escort the genomic RNA into the host cytoplasm. In the Alloleviviridae, represented by the canonical phage Qß, the maturation protein A(2) also causes lysis. This is achieved by inhibiting the activity of MurA, which catalyses the first committed step of murein biosynthesis. Previously, it was shown that Qß virions, with a single copy of A(2), inhibit MurA activity. This led to a model for lysis timing in which, during phage infection, A(2) is not active as a MurA inhibitor until assembled into virion particles, thus preventing premature lysis before a sufficient yield of viable progeny has accumulated. Here we report that MurA inactivates purified Qß particles, casting doubt on the notion that A(2) must assemble into particles prior to MurA inhibition. Furthermore, quantification of A(2) protein induced from a plasmid indicated that lysis is entrained when the amount of the lysis protein is approximately equimolar to that of cellular MurA. Qß por mutants, isolated as suppressors that overcome a murA(rat) mutation that reduces the affinity of MurA for A(2), were shown to be missense mutations in A(2) that increase the translation of the maturation protein. Because of the increased production of A(2), the por mutants have an attenuated infection cycle and reduced burst size, indicating that a delicate balance between assembled and unassembled A(2) levels regulates lysis timing.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Allolevivirus/fisiologia , Bacteriólise , Regulação Viral da Expressão Gênica , Proteínas Virais/metabolismo , Montagem de Vírus , Allolevivirus/genética , Escherichia coli/virologia
10.
Evolution ; 66(11): 3485-94, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23106712

RESUMO

It is generally thought that the adsorption rate of a bacteriophage correlates positively with fitness, but this view neglects that most phages rely only on exponentially growing bacteria for productive infections. Thus, phages must cope with the environmental stochasticity that is their hosts' physiological state. If lysogeny is one alternative, it is unclear how strictly lytic phages can survive the host stationary phase. Three scenarios may explain their maintenance: (1) pseudolysogeny, (2) diversified, or (3) conservative bet hedging. To better understand how a strictly lytic phage survives the stationary phase of its host, and how phage adsorption rate impacts this survival, we challenged two strictly lytic phage λ, differing in their adsorption rates, with stationary phase Escherichia coli cells. Our results showed that, pseudolysogeny was not responsible for phage survival and that, contrary to our expectation, high adsorption rate was not more detrimental during stationary phase than low adsorption rate. Interestingly, this last observation was due to the presence of the "residual fraction" (phages exhibiting extremely low adsorption rates), protecting phage populations from extinction. Whether this cryptic phenotypic variation is an adaptation (diversified bet hedging) or merely reflecting unavoidable defects during protein synthesis remains an open question.


Assuntos
Bacteriófago lambda/fisiologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/virologia , Adsorção , Bacteriófago lambda/genética , Bacteriófago lambda/crescimento & desenvolvimento , Aptidão Genética , Lisogenia , Modelos Biológicos , Fenótipo , Processos Estocásticos , Fatores de Tempo , Ensaio de Placa Viral , Proteínas da Cauda Viral/genética
11.
J Bacteriol ; 194(18): 5073-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22821966

RESUMO

We have sequenced and characterized two R-plasmid-dependent single-stranded RNA bacteriophages (RPD ssRNA phages), C-1 and Hagl1. Phage C-1 requires a conjugative plasmid of the IncC group, while Hgal1 requires the IncH group. Both the adsorption rate constants and one-step growth curves are determined for both phages. We also empirically confirmed the lysis function of the predicted lysis genes. Genomic sequencing and phylogenetic analyses showed that both phages belong to the Levivirus group and are most closely related to another IncP-plasmid-dependent ssRNA phage, PRR1. Furthermore, our result strongly suggests that the stereotypical bauplans of genome organization found in Levivirus and Allolevivirus predate phage specialization for conjugative plasmids, suggesting that the utilization of conjugative plasmids for cell attachment and entry comprises independent evolutionary events for these two main clades of ssRNA phages. Our result is also consistent with findings of a previous study, making the Levivirus-like genome organization ancestral and the Allolevivirus-like genome derived. To obtain a deeper insight into the evolution of ssRNA phages, more phages specializing for various conjugative plasmids and infecting different bacterial species would be needed.


Assuntos
Bacteriófagos/genética , Evolução Biológica , Genoma Viral , Levivirus/genética , Fatores R , RNA Viral/genética , Bacteriófagos/crescimento & desenvolvimento , Análise por Conglomerados , Levivirus/crescimento & desenvolvimento , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
12.
Ecosphere ; 3(10)2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24371541

RESUMO

The population densities of many organisms have changed dramatically in recent history. Increases in the population density of medically relevant organisms are of particular importance to public health as they are often correlated with the emergence of infectious diseases in human populations. Our aim is to delineate increases in density of a common disease vector in North America, the blacklegged tick, and to identify the environmental factors correlated with these population dynamics. Empirical data that capture the growth of a population are often necessary to identify environmental factors associated with these dynamics. We analyzed temporally- and spatially-structured field collected data in a geographical information systems framework to describe the population growth of blacklegged ticks (Ixodes scapularis) and to identify environmental and climatic factors correlated with these dynamics. The density of the ticks increased throughout the study's temporal and spatial ranges. Tick density increases were positively correlated with mild temperatures, low precipitation, low forest cover, and high urbanization. Importantly, models that accounted for these environmental factors accurately forecast future tick densities across the region. Tick density increased annually along the south-to-north gradient. These trends parallel the increases in human incidences of diseases commonly vectored by I. scapularis. For example, I. scapularis densities are correlated with human Lyme disease incidence, albeit in a non-linear manner that disappears at low tick densities, potentially indicating that a threshold tick density is needed to support epidemiologically-relevant levels of the Lyme disease bacterium. Our results demonstrate a connection between the biogeography of this species and public health.

13.
BMC Microbiol ; 11: 174, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21810267

RESUMO

BACKGROUND: Despite identical genotypes and seemingly uniform environments, stochastic gene expression and other dynamic intracellular processes can produce considerable phenotypic diversity within clonal microbes. One trait that provides a good model to explore the molecular basis of stochastic variation is the timing of host lysis by bacteriophage (phage). RESULTS: Individual lysis events of thermally-inducible λ lysogens were observed using a temperature-controlled perfusion chamber mounted on an inverted microscope. Both mean lysis time (MLT) and its associated standard deviation (SD) were estimated. Using the SD as a measure of lysis time stochasticity, we showed that lysogenic cells in controlled environments varied widely in lysis times, and that the level of lysis time stochasticity depended on allelic variation in the holin sequence, late promoter (pR') activity, and host growth rate. In general, the MLT was positively correlated with the SD. Both lower pR' activities and lower host growth rates resulted in larger SDs. Results from premature lysis, induced by adding KCN at different time points after lysogen induction, showed a negative correlation between the timing of KCN addition and lysis time stochasticity. CONCLUSIONS: Taken together with results published by others, we conclude that a large fraction of λ lysis time stochasticity is the result of random events following the expression and diffusion of the holin protein. Consequently, factors influencing the timing of reaching critical holin concentrations in the cell membrane, such as holin production rate, strongly influence the mean lysis time and the lysis time stochasticity.


Assuntos
Bacteriólise , Bacteriófago lambda/crescimento & desenvolvimento , Bacteriófago lambda/fisiologia , Escherichia coli/fisiologia , Escherichia coli/virologia , Modelos Estatísticos , Regiões Promotoras Genéticas , Temperatura , Fatores de Tempo , Proteínas Virais/genética
14.
BMC Microbiol ; 11: 181, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21827665

RESUMO

BACKGROUND: The appearance of plaques on a bacterial lawn is one of the enduring imageries in modern day biology. The seeming simplicity of a plaque has invited many hypotheses and models in trying to describe and explain the details of its formation. However, until now, there has been no systematic experimental exploration on how different bacteriophage (phage) traits may influence the formation of a plaque. In this study, we constructed a series of isogenic λ phages that differ in their adsorption rate, lysis timing, or morphology so that we can determine the effects if these changes on three plaque properties: size, progeny productivity, and phage concentration within plaques. RESULTS: We found that the adsorption rate has a diminishing, but negative impact on all three plaque measurements. Interestingly, there exists a concave relationship between the lysis time and plaque size, resulting in an apparent optimal lysis time that maximizes the plaque size. Although suggestive in appearance, we did not detect a significant effect of lysis time on plaque productivity. Nonetheless, the combined effects of plaque size and productivity resulted in an apparent convex relationship between the lysis time and phage concentration within plaques. Lastly, we found that virion morphology also affected plaque size. We compared our results to the available models on plaque size and productivity. For the models in their current forms, a few of them can capture the qualitative aspects of our results, but not consistently in both plaque properties. CONCLUSIONS: By using a collection of isogenic phage strains, we were able to investigate the effects of individual phage traits on plaque size, plaque productivity, and average phage concentration in a plaque while holding all other traits constant. The controlled nature of our study allowed us to test several model predictions on plaque size and plaque productivity. It seems that a more realistic theoretical approach to plaque formation is needed in order to capture the complex interaction between phage and its bacterium host in a spatially restricted environment.


Assuntos
Bactérias/virologia , Bacteriófago lambda/fisiologia , Bacteriófago lambda/genética , Ensaio de Placa Viral , Ligação Viral
15.
BMC Evol Biol ; 9: 241, 2009 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-19804637

RESUMO

BACKGROUND: Bacterial biofilm is ubiquitous in nature. However, it is not clear how this crowded habitat would impact the evolution of bacteriophage (phage) life history traits. In this study, we constructed isogenic lambda phage strains that only differed in their adsorption rates, because of the presence/absence of extra side tail fibers or improved tail fiber J, and maker states. The high cell density and viscosity of the biofilm environment was approximated by the standard double-layer agar plate. The phage infection cycle in the biofilm environment was decomposed into three stages: settlement on to the biofilm surface, production of phage progeny inside the biofilm, and emigration of phage progeny out of the current focus of infection. RESULTS: We found that in all cases high adsorption rate is beneficial for phage settlement, but detrimental to phage production (in terms of plaque size and productivity) and emigration out of the current plaque. Overall, the advantage of high adsorption accrued during settlement is more than offset by the disadvantages experienced during the production and emigration stages. The advantage of low adsorption rate was further demonstrated by the rapid emergence of low-adsorption mutant from a high-adsorption phage strain with the side tail fibers. DNA sequencing showed that 19 out of the 21 independent mutant clones have mutations in the stf gene, with the majority of them being single-nucleotide insertion/deletion mutations occurring in regions with homonucleotide runs. CONCLUSION: We conclude that high mutation rate of the stf gene would ensure the existence of side tail fiber polymorphism, thus contributing to rapid adaptation of the phage population between diametrically different habitats of benthic biofilm and planktonic liquid culture. Such adaptability would also help to explain the maintenance of the stf gene in phage lambda's genome.


Assuntos
Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , Biofilmes , Proteínas da Cauda Viral/genética , Adaptação Biológica/genética , Adsorção , DNA Viral/genética , Escherichia coli/virologia , Evolução Molecular , Mutação , Polimorfismo Genético , Análise de Sequência de DNA , Ensaio de Placa Viral
16.
Genetics ; 181(4): 1467-75, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19171945

RESUMO

For many bacteriophages (phages), the proteins responsible for host lysis and virion morphogenesis are expressed from the same polycistronic transcript. Such an expression pattern can potentially have a pleiotropic effect on the assembly rate and lysis time, thus affecting phage fitness. To study the effects of late promoter activity on phage life history traits and fitness, we constructed a series of isogenic phage lambda strains that differ only in their late promoter pR' sequences. The resulting late promoter activities ranged from 6 to 100% of the wild type's. The lysis times, burst sizes, and relative fitness were empirically determined for these strains. Our results showed that the lysis time is more sensitive than the assembly rate to variation in pR' activity. However, except for the strain with the lowest activity, the relative fitnesses of all the other strains are not significantly different from each other. Ad hoc models describing the effects of the late promoter activity on lysis time and assembly rate were constructed. The expected phage burst size and fitness curve were predicted from these models. Evolution of the late promoter activity was discussed in the context of phage life history trait evolution.


Assuntos
Bacteriófago lambda/genética , Evolução Molecular , Regiões Promotoras Genéticas/fisiologia , Morte Celular/genética , Simulação por Computador , Regulação Viral da Expressão Gênica , Replicação Viral/genética , Eliminação de Partículas Virais/genética
17.
Genetics ; 180(1): 471-82, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18757924

RESUMO

The first step of bacteriophage (phage) infection is the attachment of the phage virion onto a susceptible host cell. This adsorption process is usually described by mass-action kinetics, which implicitly assume an equal influence of host density and adsorption rate on the adsorption process. Therefore, an environment with high host density can be considered as equivalent to a phage endowed with a high adsorption rate, and vice versa. On the basis of this assumption, the effect of adsorption rate on the evolution of phage optimal lysis time can be reinterpreted from previous optimality models on the evolution of optimal lysis time. That is, phage strains with a higher adsorption rate would have a shorter optimal lysis time and vice versa. Isogenic phage lambda-strains with different combinations of six different lysis times (ranging from 29.3 to 68 min), two adsorption rates (9.9 x 10(-9) and 1.3 x 10(-9) phage(-1) cell(-1) ml(-1) min(-1)), and two markers (resulting in "blue" or "white" plaques) were constructed. Various pairwise competitions among these strains were conducted to test the model prediction. As predicted by the reinterpreted model, the results showed that the optimal lysis time is shorter for phage strains with a high adsorption rate and vice versa. Competition between high- and low-adsorption strains also showed that, under current conditions and phenotype configurations, the adsorption rate has a much larger impact on phage relative fitness than the lysis time.


Assuntos
Bacteriófagos/metabolismo , Bacteriófagos/fisiologia , Adsorção , Bacteriófago lambda/genética , Bacteriófagos/genética , Evolução Molecular , Marcadores Genéticos , Genótipo , Cinética , Óperon Lac , Lisogenia , Modelos Biológicos , Modelos Genéticos , Mutação , Análise de Sequência de DNA , Fatores de Tempo
18.
J Theor Biol ; 250(3): 569-79, 2008 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-18062992

RESUMO

Many pathogen life histories include a free-living stage, often with anatomical and physiological adaptations promoting persistence outside of host tissues. More durable particles presumably require that the pathogen metabolize more resources per particle. Therefore, we hypothesize functional dependencies, pleiotropic constraints, between the rate at which free-living particles decay outside of host tissues and other pathogen traits, including virulence, the probability of infecting a host upon contact, and pathogen reproduction within host tissues. Assuming that pathogen strains compete for hosts preemptively, we find patterns in trait dependencies predicting whether or not strain competition favors a highly persistent free-living stage.


Assuntos
Interações Hospedeiro-Patógeno , Estágios do Ciclo de Vida/fisiologia , Modelos Biológicos , Virulência/fisiologia , Adaptação Fisiológica , Animais , Evolução Biológica , Comportamento Competitivo , Especificidade da Espécie
19.
Genetics ; 172(1): 17-26, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16219778

RESUMO

The effect of lysis timing on bacteriophage (phage) fitness has received little theoretical or experimental attention. Previously, the impact of lysis timing on phage fitness was studied using a theoretical model based on the marginal value theorem from the optimal foraging theory. An implicit conclusion of the model is that, for any combination of host quantity and quality, an optimal time to lyse the host would exist so that the phage fitness would be the highest. To test the prediction, an array of isogenic lambda-phages that differ only in their lysis times was constructed. For each phage strain, the lysis time, burst size, and fitness (growth rate) were determined. The result showed that there is a positive linear relationship between lysis time and burst size. Moreover, the strain with an intermediate lysis time has the highest fitness, indicating the existence of an optimal lysis time. A mathematical model is also constructed to describe the population dynamics of phage infection. Computer simulations using parameter values derived from phage lambda-infection also showed an optimal lysis time. However, both the optimum and the fitness are different from the experimental result. The evolution of phage lysis timing is discussed from the perspectives of multiple infection and life-history trait evolution.


Assuntos
Bacteriólise , Bacteriófago lambda/crescimento & desenvolvimento , Bacteriófago lambda/genética , Evolução Biológica , Simulação por Computador , Modelos Biológicos , Fatores de Tempo
20.
Proc Natl Acad Sci U S A ; 101(17): 6415-20, 2004 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-15090650

RESUMO

The Lyz endolysin of bacteriophage P1 was found to cause lysis of the host without a holin. Induction of a plasmid-cloned lyz resulted in lysis, and the lytic event could be triggered prematurely by treatments that dissipate the proton-motive force. Instead of requiring a holin, export was mediated by an N-terminal transmembrane domain (TMD) and required host sec function. Exported Lyz of identical SDS/PAGE mobility was found in both the membrane and periplasmic compartments, indicating that periplasmic Lyz was not generated by the proteolytic cleavage of the membrane-associated form. In gene fusion experiments, the Lyz TMD directed PhoA to both the membrane and periplasmic compartments, whereas the TMD of the integral membrane protein FtsI restricts Lyz to the membrane. Thus, the N-terminal domain of Lyz is both necessary and sufficient not only for export of this endolysin to the membrane but also for its release into the periplasm. The unusual N-terminal domain, rich in residues that are weakly hydrophobic, thus functions as a signal-arrest-release sequence, which first acts as a normal signal-arrest domain to direct the endolysin to the periplasm in membrane-tethered form and then allows it to be released as a soluble active enzyme in the periplasm. Examination of the protein sequences of related bacteriophage endolysins suggests that the presence of an N-terminal signal-arrest-release sequence is not unique to Lyz. These observations are discussed in relation to the role of holins in the control of host lysis by bacteriophage encoding a secretory endolysin.


Assuntos
Bacteriófago P1/metabolismo , Endopeptidases/metabolismo , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Endopeptidases/química , Escherichia coli/virologia , Dados de Sequência Molecular , Transporte Proteico , Homologia de Sequência de Aminoácidos , Frações Subcelulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...