Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Life Sci ; 19(1): 20220816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314140

RESUMO

Remifentanil-induced hyperalgesia (RIH) is a common clinical phenomenon that limits the use of opioids in pain management. Esketamine, a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, has been shown to prevent and treat RIH. However, the underlying effect mechanism of esketamine on RIH remains unclear. This study aimed to investigate the role and mechanism of esketamine in preventing and treating RIH based on the NMDA receptor-CaMKIIα pathway. In this study, an experimental animal model was used to determine the therapeutic effect of esketamine on pain elimination. Moreover, the mRNA transcription and protein expression levels of CaMKII and GluN2B were investigated to offer evidence of the protective capability of esketamine in ameliorating RIH. The results demonstrated that esketamine attenuated RIH by inhibiting CaMKII phosphorylation and downstream signaling pathways mediated by the NMDA receptor. Furthermore, ketamine reversed the upregulation of spinal CaMKII induced by remifentanil. These findings suggest that the NMDA receptor-CaMKII pathway plays a critical role in the development of RIH, and ketamine's effect on this pathway may provide a new therapeutic approach for the prevention and treatment of RIH.

2.
Front Med (Lausanne) ; 10: 1170520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293306

RESUMO

Background: Hemoporfin-mediated photodynamic therapy (PDT) is an effective treatment for port-wine stains (PWS), and pain is the main adverse effect of this therapy. General anesthesia is commonly used for pain management during PDT, but the effect of general anesthetics on the subsequent treatment efficacy of PDT in PWS has not been reported. Objectives: To assess the use of general anesthesia combined with PDT compared with PDT alone in 207 PWS patients, and to provide further safety and efficacy data on this combined therapy. Methods: Propensity score matching (PSM) was used at a 2:1 ratio to create a general anesthetic group (n = 138) and a highly comparable nonanesthetic group (n = 69). The clinical outcomes were evaluated, and the treatment reactions and adverse effects were recorded after one treatment with PDT. Results: After matching, there was no significant difference in the demographic data of the patients in the two groups (p > 0.05), while the treatment efficacy was significantly higher in the general anesthetic group than in the nonanesthetic group (76.81 vs. 56.52%, p < 0.05). Moreover, logistic regression analysis confirmed that patients receiving general anesthesia showed an association with a good response to PDT (OR = 3.06; 95% CI, 1.57-6.00; p = 0.0011). Purpura lasted longer in the general anesthetic group, but the other treatment reactions and adverse effects were similar in the two groups (p > 0.05). No serious systemic adverse reactions were observed. Conclusion: We recommend this combined therapy, which is associated with painless, as a high efficacy treatment option for PWS patients, especially for patients with a poor response to multiple PDT alone treatments.

3.
Brain Behav ; 13(5): e2983, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36974339

RESUMO

BACKGROUND: Clinical neurology is difficult for young residents. To familiarize with neurological emergencies as soon as possible for young doctors, the urgent inpatient neurologic consultations were analyzed. METHODS: A retrospective study was conducted on the urgent inpatient neurologic consultations in a large tertiary hospital for 4 consecutive years. RESULTS: A total of 1437 cases were included, and the annual consultation cases gradually decreased from 573 to 257, involving 29 clinical departments. The disorders of urgent inpatient neurologic consultations were divided into three categories: neurological disorders (77.8%), non-neurological disorders (10.4%), and undiagnosed disorders (11.8%), common causes in consultation were disturbance of consciousness (36.0%), convulsions/stiffness (13.6%), limb weakness (8%), and mental disorder (5.6%). Common neurological disorders included acute cerebrovascular disease (33.6%), epilepsy/status epilepticus (15.8%), and metabolic or infectious toxic encephalopathy (14.9%). CONCLUSION: Urgent inpatient neurologic consultations involve multidisciplinary critical diseases, mainly neurological diseases. The standardized training of residents may help to rapidly improve the comprehensive diagnosis and treatment ability of young residents and is suitable for use in hospitals at all levels.


Assuntos
Epilepsia , Pacientes Internados , Humanos , Centros de Atenção Terciária , Estudos Retrospectivos , Seguimentos , Encaminhamento e Consulta , Epilepsia/diagnóstico , Epilepsia/terapia
4.
Adv Mater ; 35(15): e2207255, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36779454

RESUMO

The intestinal muscle layers execute various gut wall movements to achieve controlled propulsion and mixing of intestinal content. Engineering intestinal muscle layers with complex contractile function is critical for developing bioartificial intestinal tissue to treat patients with short bowel syndrome. Here, the first demonstration of a living intestinal muscle patch capable of generating three distinct motility patterns and displaying multiple digesta manipulations is reported. Assessment of contractility, cellular morphology, and transcriptome profile reveals that successful generation of the contracting muscle patch relies on both biological factors in a serum-free medium and environmental cues from an elastic electrospun gelatin scaffold. By comparing gene-expression patterns among samples, it is shown that biological factors from the medium strongly affect ion-transport activities, while the scaffold unexpectedly regulates cell-cell communication. Analysis of ligandreceptor interactome identifies scaffold-driven changes in intercellular communication, and 78% of the upregulated ligand-receptor interactions are involved in the development and function of enteric neurons. The discoveries highlight the importance of combining biomolecular and biomaterial approaches for tissue engineering. The living intestinal muscle patch represents a pivotal advancement for building functional replacement intestinal tissue. It offers a more physiological model for studying GI motility and for preclinical drug discovery.


Assuntos
Conteúdo Gastrointestinal , Músculo Liso , Humanos , Músculo Liso/fisiologia , Intestinos , Engenharia Tecidual , Contração Muscular , Fatores Biológicos
5.
Nanomaterials (Basel) ; 12(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35159705

RESUMO

Nanotechnology is used in a wide range of fields, including medicine, cosmetics, and new material development, and is one of the most popular technologies in the field of flexible electronic products. For the present work, the chemical reduction method with environmentally friendly reducing agents was used to synthesize copper nanoparticles (CuNPs) with good dispersibility. The CuNPs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and ultraviolet-visible spectrophotometry (UV-vis). After the CuNPs were formed, the solvent, polymers, and additives were added to form copper ink. Finally, the prepared copper inks were applied to flexible polyethylene terephthalate (PET) substrate under low sintering temperature and the effects of sintering time and different concentrations of sintering agent on resistivity were investigated. The results show that the copper nanoparticles synthesized by secondary reduction were smaller, more uniform, and better dispersed than those formed by primary reduction. Ethylene glycol has reducing effects under high temperatures; therefore, the CuNPs formed using the mixed solvent were small and well dispersed. The copper ink was applied on the PET substrate, treated with a formic acid aqueous solution, and sintered at 130 °C for 60 min, and its resistivity was about 1.67 × 10-3 Ω cm. The proposed synthesizing method is expected to have potential applications in the flexible electronic products field.

6.
Cell Transplant ; 29: 963689720903709, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32907378

RESUMO

Human small intestinal crypts are the source of intestinal stem cells (ISCs) that are capable of undergoing self-renewal and differentiation to an epithelial layer. The development of methods to expand the ISCs has provided opportunities to model human intestinal epithelial disorders. Human crypt samples are usually obtained from either endoscopic or discarded surgical samples, and are thereby exposed to warm ischemia, which may impair their in vitro growth as three-dimensional culture as spheroids or enteroids. In this study we compared duodenal samples obtained from discarded surgical samples to those isolated from whole-body preserved cadaveric donors to generate in vitro cultures. We also examined the effect of storage solution (phosphate-buffered saline or University of Wisconsin [UW] solution) as well as multiple storage times on crypt isolation and growth in culture. We found that intestinal crypts were successfully isolated from cadaveric tissue stored for up to 144 h post-procurement and also were able to generate enteroids and spheroids in certain media conditions. Surgical samples stored in UW after procurement were sufficiently viable up to 24 h and also allowed the generation of enteroids and spheroids. We conclude that surgical samples stored for up to 24 h post-procurement in UW solution allowed for delayed crypt isolation and viable in vitro cultures. Furthermore, in situ, hypothermic preservation in cadaveric duodenal samples permitted crypt/ISC isolation, and successful culture of spheroids and enteroids from tissues held for up to 6 days post-procurement.


Assuntos
Técnicas de Cultura de Células/métodos , Intestinos/fisiopatologia , Cadáver , Diferenciação Celular , Humanos
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(3): 337-341, 2020 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-32376592

RESUMO

OBJECTIVE: To analyze the clinical characteristics of patients with severe or critical coronavirus disease 2019 (COVID-19) receiving tracheal intubation. METHODS: We analyzed clinical characteristics of 18 severely or critically ill patients with COVID-19 undergoing tracheal intubation. The general demographic and clinical data of the patients including their age, gender, pre- intubation state of consciousness and the ventilation mode were recorded. The anesthesiologists performing the tracheal intubation procedure evaluated and recorded the tracheal intubation conditions of the patients. The changes in the vital signs of the patients before anesthesia induction and after intubation were recorded. RESULTS: The average ages of these patients were 70.39±8.02 years. Fifteen patients (83.33%) received non- invasive ventilation before tracheal intubation, and 13 patients (72.22%) were conscious before tracheal intubation. After induction of anesthesia, the blood pressure and heart rate of the patients decreased significantly (P < 0.05). Most of the patients (94.44%) were in excellent or good conditions for tracheal intubation, and the first-attempt success rate of tracheal intubation was 100%. Five patients died within 3 weeks following the intubation. Tracheotomy was performed in one patient. Twelve patients were still on endotracheal mechanical ventilation in the intensive care unit, and one of them received ECMO treatment due to poor oxygenation. A total of 16 experienced anesthesiologists participated in tracheal intubation, all with third-level protection during the operation, and no medical staff infection has been detected so far. CONCLUSIONS: For patients with severe and critical COVID-19 and indications of tracheal intubation, we recommend early intubation with invasive respiratory support to improve the treatment efficacy and reduce the mortality. Anesthetic agents should be used carefully during tracheal intubation to ensure patients' safety. The medical staff should have a high-level protection during the intubation to maximally ensure their safety.


Assuntos
Infecções por Coronavirus/terapia , Intubação Intratraqueal , Pneumonia Viral/terapia , Idoso , Betacoronavirus , COVID-19 , Humanos , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2
8.
JCI Insight ; 5(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31805014

RESUMO

Biallelic mutations of the gene encoding the transcription factor NEUROG3 are associated with a rare disorder that presents in neonates as generalized malabsorption - due to a complete absence of enteroendocrine cells - followed, in early childhood or beyond, by insulin-dependent diabetes mellitus (IDDM). The commonly delayed onset of IDDM suggests a differential requirement for NEUROG3 in endocrine cell generation in the human pancreas versus the intestine. However, previously identified human mutations were hypomorphic and, hence, may have had residual function in pancreas. We report 2 patients with biallelic functionally null variants of the NEUROG3 gene who nonetheless did not present with IDDM during infancy but instead developed permanent IDDM during middle childhood ages. The variants showed no evidence of function in traditional promoter-based assays of NEUROG3 function and also failed to exhibit function in a variety of potentially novel in vitro and in vivo molecular assays designed to discern residual NEUROG3 function. These findings imply that, unlike in mice, pancreatic endocrine cell generation in humans is not entirely dependent on NEUROG3 expression and, hence, suggest the presence of unidentified redundant in vivo pathways in human pancreas capable of yielding ß cell mass sufficient to maintain euglycemia until early childhood.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diabetes Mellitus/genética , Predisposição Genética para Doença , Mutação com Perda de Função , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células , Criança , Diabetes Mellitus Tipo 1 , Células Enteroendócrinas/metabolismo , Feminino , Regulação da Expressão Gênica , Sequências Hélice-Alça-Hélice/genética , Humanos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas , Síndromes de Malabsorção , Masculino , Proteínas do Tecido Nervoso/metabolismo , Pâncreas , Regiões Promotoras Genéticas
9.
J Biol Chem ; 294(41): 15182-15192, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31341016

RESUMO

Neurogenin-3 (NEUROG3) is a helix-loop-helix (HLH) transcription factor involved in the production of endocrine cells in the intestine and pancreas of humans and mice. However, the human NEUROG3 loss-of-function phenotype differs subtly from that in mice, but the reason for this difference remains poorly understood. Because NEUROG3 expression precedes exit of the cell cycle and the expression of endocrine cell markers during differentiation, we investigated the effect of lentivirus-mediated overexpression of the human NEUROG3 gene on the cell cycle of BON4 cells and various human nonendocrine cell lines. NEUROG3 overexpression induced a reversible cell cycle exit, whereas expression of a neuronal lineage homolog, NEUROG1, had no such effect. In endocrine lineage cells, the cellular quiescence induced by short-term NEUROG3 expression required cyclin-dependent kinase inhibitor 1A (CDKN1A)/p21CIP1 expression. Expression of endocrine differentiation markers required sustained NEUROG3 expression in the quiescent, but not in the senescent, state. Inhibition of the phosphatase and tensin homolog (PTEN) pathway reversed quiescence by inducing cyclin-dependent kinase 2 (CDK2) and reducing p21CIP1 and NEUROG3 protein levels in BON4 cells and human enteroids. We discovered that NEUROG3 expression stimulates expression of CDKN2a/p16INK4a and BMI1 proto-oncogene polycomb ring finger (BMI1), with the latter limiting expression of the former, delaying the onset of CDKN2a/p16INK4a -driven cellular senescence. Furthermore, NEUROG3 bound to the promoters of both CDKN1a/p21CIP1 and BMI1 genes, and BMI1 attenuated NEUROG3 binding to the CDKN1a/p21CIP1 promoter. Our findings reveal how human NEUROG3 integrates inputs from multiple signaling pathways and thereby mediates cell cycle exit at the onset of differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Pontos de Checagem do Ciclo Celular , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Linhagem Celular , Senescência Celular , Regulação da Expressão Gênica , Genes p16 , Humanos , Proto-Oncogene Mas
10.
PLoS One ; 14(5): e0216326, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150401

RESUMO

Adult intestinal epithelial stem cells are a promising resource for treatment of intestinal epithelial disorders that cause intestinal failure and for intestinal tissue engineering. We developed two different animal models to study the implantation of cultured murine and human intestinal epithelial cells in the less differentiated "spheroid" state and the more differentiated "enteroid" state into the denuded small intestine of mice. Engraftment of donor cells could not be achieved while the recipient intestine remained in continuity. However, we were able to demonstrate successful implantation of murine and human epithelial cells when the graft segment was in a bypassed loop of jejunum. Implantation of donor cells occurred in a random fashion in villus and crypt areas. Engraftment was observed in 75% of recipients for murine and 36% of recipients for human cells. Engrafted spheroid cells differentiated into the full complement of intestinal epithelial cells. These findings demonstrate for the first time successful engraftment into the small bowel which is optimized in a bypassed loop surgical model.


Assuntos
Células Epiteliais/transplante , Intestino Delgado/citologia , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Sobrevivência de Enxerto , Humanos , Jejuno , Camundongos , Esferoides Celulares/transplante
11.
Am J Physiol Gastrointest Liver Physiol ; 315(5): G722-G733, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29953254

RESUMO

Inflammatory bowel disease (IBD) is a complex disorder that is associated with significant morbidity. While many recent advances have been made with new diagnostic and therapeutic tools, a deeper understanding of its basic pathophysiology is needed to continue this trend toward improving treatments. By utilizing an unbiased, high-throughput transcriptomic analysis of two well-established mouse models of colitis, we set out to uncover novel coding and noncoding RNAs that are differentially expressed in the setting of colonic inflammation. RNA-seq analysis was performed using colonic tissue from two mouse models of colitis, a dextran sodium sulfate-induced model and a genetic-induced model in mice lacking IL-10. We identified 81 coding RNAs that were commonly altered in both experimental models. Of these coding RNAs, 12 of the human orthologs were differentially expressed in a transcriptomic analysis of IBD patients. Interestingly, 5 of the 12 of human differentially expressed genes have not been previously identified as IBD-associated genes, including ubiquitin D. Our analysis also identified 15 noncoding RNAs that were differentially expressed in either mouse model. Surprisingly, only three noncoding RNAs were commonly dysregulated in both of these models. The discovery of these new coding and noncoding RNAs expands our transcriptional knowledge of mouse models of IBD and offers additional targets to deepen our understanding of the pathophysiology of IBD. NEW & NOTEWORTHY Much of the genome is transcribed as non-protein-coding RNAs; however, their role in inflammatory bowel disease is largely unknown. This study represents the first of its kind to analyze the expression of long noncoding RNAs in two mouse models of inflammatory bowel disease and correlate them to human clinical samples. Using high-throughput RNA-seq analysis, we identified new coding and noncoding RNAs that were differentially expressed such as ubiquitin D and 5730437C11Rik.


Assuntos
Colite/genética , Doenças Inflamatórias Intestinais/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Animais , Células CACO-2 , Células Cultivadas , Colite/metabolismo , Colo/metabolismo , Colo/patologia , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Transcriptoma
12.
Cell Stem Cell ; 22(2): 206-220.e4, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29395055

RESUMO

Adequate availability of cellular building blocks, including lipids, is a prerequisite for cellular proliferation, but excess dietary lipids are linked to increased cancer risk. Despite these connections, specific regulatory relationships between membrane composition, intestinal stem cell (ISC) proliferation, and tumorigenesis are unclear. We reveal an unexpected link between membrane phospholipid remodeling and cholesterol biosynthesis and demonstrate that cholesterol itself acts as a mitogen for ISCs. Inhibition of the phospholipid-remodeling enzyme Lpcat3 increases membrane saturation and stimulates cholesterol biosynthesis, thereby driving ISC proliferation. Pharmacologic inhibition of cholesterol synthesis normalizes crypt hyperproliferation in Lpcat3-deficient organoids and mice. Conversely, increasing cellular cholesterol content stimulates crypt organoid growth, and providing excess dietary cholesterol or driving endogenous cholesterol synthesis through SREBP-2 expression promotes ISC proliferation in vivo. Finally, disruption of Lpcat3-dependent phospholipid and cholesterol homeostasis dramatically enhances tumor formation in Apcmin mice. These findings identify a critical dietary-responsive phospholipid-cholesterol axis regulating ISC proliferation and tumorigenesis.


Assuntos
Carcinogênese/metabolismo , Colesterol/metabolismo , Intestinos/patologia , Fosfolipídeos/metabolismo , Células-Tronco/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/deficiência , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Animais , Vias Biossintéticas , Carcinogênese/patologia , Proliferação de Células , Camundongos , Organoides/metabolismo
13.
Cell Tissue Res ; 365(1): 123-34, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26928041

RESUMO

Porcine models are useful for investigating therapeutic approaches to short bowel syndrome and potentially to intestinal stem cell (ISC) transplantation. Whereas techniques for the culture and genetic manipulation of ISCs from mice and humans are well established, similar methods for porcine stem cells have not been reported. Jejunal crypts were isolated from murine, human, and juvenile and adult porcine small intestine, suspended in Matrigel, and co-cultured with syngeneic intestinal subepithelial myofibroblasts (ISEMFs) or cultured without feeder cells in various culture media. Media containing epidermal growth factor, noggin, and R-spondin 1 (ENR medium) were supplemented with various combinations of Wnt3a- or ISEMF-conditioned medium (CM) and with glycogen synthase kinase 3 inhibitor (GSK3i), and their effects were studied on cultured crypts. Cell lineage differentiation was assessed by immunohistochemistry and quantitative polymerase chain reaction. Cultured porcine cells were serially passaged and transduced with a lentiviral vector. Whereas ENR medium supported murine enteroid growth, it did not sustain porcine crypts beyond 5 days. Supplementation of Wnt3a-CM and GSK3i resulted in the formation of complex porcine enteroids with budding extensions. These enteroids contained a mixture of stem and differentiated cells and were successfully passaged in the presence of GSK3i. Crypts grown in media supplemented with porcine ISEMF-CM formed spheroids that were less well differentiated than enteroids. Enteroids and spheroids were transfected with a lentivirus with high efficiency. Thus, our method maintains juvenile and adult porcine crypt cells long-term in culture. Porcine enteroids and spheroids can be successfully passaged and transduced by using lentiviral vectors.


Assuntos
Envelhecimento/fisiologia , Intestinos/citologia , Técnicas de Cultura de Tecidos/métodos , Animais , Criopreservação , Meios de Cultivo Condicionados/farmacologia , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Camundongos , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Sus scrofa , Temperatura , Transdução Genética
14.
PLoS One ; 11(1): e0148216, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26820624

RESUMO

BACKGROUND & AIMS: Intestinal microfold (M) cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer's patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs), and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting. METHODS: Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium. RESULTS: Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2) in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells. CONCLUSIONS: Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium preferentially infect these cells in an in vitro setting. We anticipate that this model can be used to generate large numbers of M cells for further functional studies of these key cells of intestinal immune induction and their impact on controlling enteric pathogens and the intestinal microbiome.


Assuntos
Mucosa Intestinal/citologia , Intestino Delgado/citologia , Nódulos Linfáticos Agregados/citologia , Células-Tronco/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Cultivadas , Humanos , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Intestino Delgado/imunologia , Intestino Delgado/microbiologia , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/microbiologia , Ligante RANK/imunologia , Salmonella typhimurium/imunologia , Células-Tronco/imunologia
15.
PLoS One ; 9(7): e102000, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25058658

RESUMO

While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg-1. Copy numbers of amoA (AOA and AOB genes) were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils.


Assuntos
Archaea/genética , Bactérias/genética , Desnitrificação/genética , Poluição Ambiental , Genes Arqueais , Genes Bacterianos , Microbiologia do Solo , Amônia/metabolismo , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Sequência de Bases , China , Metais Pesados/metabolismo , Consórcios Microbianos/genética , Mineração , Dados de Sequência Molecular , Oryza/crescimento & desenvolvimento , Oxirredução , Filogenia
16.
PLoS One ; 9(1): e84651, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24400106

RESUMO

Intestinal epithelial stem cells (ISCs) are the focus of recent intense study. Current in vitro models rely on supplementation with the Wnt agonist R-spondin1 to support robust growth, ISC self-renewal, and differentiation. Intestinal subepithelial myofibroblasts (ISEMFs) are important supportive cells within the ISC niche. We hypothesized that co-culture with ISEMF enhances the growth of ISCs in vitro and allows for their successful in vivo implantation and engraftment. ISC-containing small intestinal crypts, FACS-sorted single ISCs, and ISEMFs were procured from C57BL/6 mice. Crypts and single ISCs were grown in vitro into enteroids, in the presence or absence of ISEMFs. ISEMFs enhanced the growth of intestinal epithelium in vitro in a proximity-dependent fashion, with co-cultures giving rise to larger enteroids than monocultures. Co-culture of ISCs with supportive ISEMFs relinquished the requirement of exogenous R-spondin1 to sustain long-term growth and differentiation of ISCs. Mono- and co-cultures were implanted subcutaneously in syngeneic mice. Co-culture with ISEMFs proved necessary for successful in vivo engraftment and proliferation of enteroids; implants without ISEMFs did not survive. ISEMF whole transcriptome sequencing and qPCR demonstrated high expression of specific R-spondins, well-described Wnt agonists that supports ISC growth. Specific non-supportive ISEMF populations had reduced expression of R-spondins. The addition of ISEMFs in intestinal epithelial culture therefore recapitulates a critical element of the intestinal stem cell niche and allows for its experimental interrogation and biodesign-driven manipulation.


Assuntos
Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Miofibroblastos/metabolismo , Células-Tronco/metabolismo , Animais , Técnicas de Cultura de Células , Proliferação de Células , Células Cultivadas , Análise por Conglomerados , Perfilação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Células-Tronco/citologia , Transcriptoma
17.
J Pediatr Gastroenterol Nutr ; 57(6): 759-67, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24280991

RESUMO

OBJECTIVES: Congenital diarrhea disorders are a group of genetically diverse and typically autosomal recessive disorders that have yet to be well characterized phenotypically or molecularly. Diagnostic assessments are generally limited to nutritional challenges and histologic evaluation, and many subjects eventually require a prolonged course of intravenous nutrition. Here we describe next-generation sequencing techniques to investigate a child with perplexing congenital malabsorptive diarrhea and other presumably unrelated clinical problems; this method provides an alternative approach to molecular diagnosis. METHODS: We screened the diploid genome of an affected individual, using exome sequencing, for uncommon variants that have observed protein-coding consequences. We assessed the functional activity of the mutant protein, as well as its lack of expression using immunohistochemistry. RESULTS: Among several rare variants detected was a homozygous nonsense mutation in the catalytic domain of the proprotein convertase subtilisin/kexin type 1 gene. The mutation abolishes prohormone convertase 1/3 endoprotease activity as well as expression in the intestine. These primary genetic findings prompted a careful endocrine reevaluation of the child at 4.5 years of age, and multiple significant problems were subsequently identified consistent with the known phenotypic consequences of proprotein convertase subtilisin/kexin type 1 (PCSK1) gene mutations. Based on the molecular diagnosis, alternate medical and dietary management was implemented for diabetes insipidus, polyphagia, and micropenis. CONCLUSIONS: Whole-exome sequencing provides a powerful diagnostic tool to clinicians managing rare genetic disorders with multiple perplexing clinical manifestations.


Assuntos
Códon sem Sentido , Diabetes Insípido/complicações , Diarreia/genética , Exoma , Síndromes de Malabsorção/genética , Pró-Proteína Convertase 1/genética , Diarreia/congênito , Diarreia/diagnóstico , Homozigoto , Humanos , Recém-Nascido , Síndromes de Malabsorção/congênito , Síndromes de Malabsorção/diagnóstico , Masculino , Pró-Proteína Convertase 1/metabolismo , Análise de Sequência de DNA
18.
Am J Physiol Gastrointest Liver Physiol ; 305(8): G542-51, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23928185

RESUMO

Fluorescence-activated cell sorting (FACS) is an essential tool for studies requiring isolation of distinct intestinal epithelial cell populations. Inconsistent or lack of reporting of the critical parameters associated with FACS methodologies has complicated interpretation, comparison, and reproduction of important findings. To address this problem a comprehensive multicenter study was designed to develop guidelines that limit experimental and data reporting variability and provide a foundation for accurate comparison of data between studies. Common methodologies and data reporting protocols for tissue dissociation, cell yield, cell viability, FACS, and postsort purity were established. Seven centers tested the standardized methods by FACS-isolating a specific crypt-based epithelial population (EpCAM+/CD44+) from murine small intestine. Genetic biomarkers for stem/progenitor (Lgr5 and Atoh 1) and differentiated cell lineages (lysozyme, mucin2, chromogranin A, and sucrase isomaltase) were interrogated in target and control populations to assess intra- and intercenter variability. Wilcoxon's rank sum test on gene expression levels showed limited intracenter variability between biological replicates. Principal component analysis demonstrated significant intercenter reproducibility among four centers. Analysis of data collected by standardized cell isolation methods and data reporting requirements readily identified methodological problems, indicating that standard reporting parameters facilitate post hoc error identification. These results indicate that the complexity of FACS isolation of target intestinal epithelial populations can be highly reproducible between biological replicates and different institutions by adherence to common cell isolation methods and FACS gating strategies. This study can be considered a foundation for continued method development and a starting point for investigators that are developing cell isolation expertise to study physiology and pathophysiology of the intestinal epithelium.


Assuntos
Células Epiteliais/fisiologia , Citometria de Fluxo/normas , Mucosa Intestinal/citologia , Animais , Técnicas de Cultura de Células , Sobrevivência Celular , Regulação da Expressão Gênica , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Variações Dependentes do Observador , Coloração e Rotulagem
19.
Gastroenterology ; 145(1): 138-148, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23562752

RESUMO

BACKGROUND & AIMS: Proprotein convertase 1/3 (PC1/3) deficiency, an autosomal-recessive disorder caused by rare mutations in the proprotein convertase subtilisin/kexin type 1 (PCSK1) gene, has been associated with obesity, severe malabsorptive diarrhea, and certain endocrine abnormalities. Common variants in PCSK1 also have been associated with obesity in heterozygotes in several population-based studies. PC1/3 is an endoprotease that processes many prohormones expressed in endocrine and neuronal cells. We investigated clinical and molecular features of PC1/3 deficiency. METHODS: We studied the clinical features of 13 children with PC1/3 deficiency and performed sequence analysis of PCSK1. We measured enzymatic activity of recombinant PC1/3 proteins. RESULTS: We identified a pattern of endocrinopathies that develop in an age-dependent manner. Eight of the mutations had severe biochemical consequences in vitro. Neonates had severe malabsorptive diarrhea and failure to thrive, required prolonged parenteral nutrition support, and had high mortality. Additional endocrine abnormalities developed as the disease progressed, including diabetes insipidus, growth hormone deficiency, primary hypogonadism, adrenal insufficiency, and hypothyroidism. We identified growth hormone deficiency, central diabetes insipidus, and male hypogonadism as new features of PCSK1 insufficiency. Interestingly, despite early growth abnormalities, moderate obesity, associated with severe polyphagia, generally appears. CONCLUSIONS: In a study of 13 children with PC1/3 deficiency caused by disruption of PCSK1, failure of enteroendocrine cells to produce functional hormones resulted in generalized malabsorption. These findings indicate that PC1/3 is involved in the processing of one or more enteric hormones that are required for nutrient absorption.


Assuntos
Diarreia/etiologia , Doenças do Sistema Endócrino/etiologia , Síndromes de Malabsorção/etiologia , Obesidade/complicações , Pró-Proteína Convertase 1/deficiência , Adolescente , Hormônio Adrenocorticotrópico/sangue , Criança , Pré-Escolar , Estudos de Coortes , Doenças do Sistema Endócrino/complicações , Doenças do Sistema Endócrino/congênito , Feminino , Humanos , Lactente , Masculino , Mutação , Obesidade/congênito , Pró-Proteína Convertase 1/genética
20.
Tissue Eng Part C Methods ; 19(12): 961-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23566043

RESUMO

Methods for the in vitro culture of primary small intestinal epithelium have improved greatly in recent years. A critical barrier for the translation of this methodology to the patient's bedside is the ability to grow intestinal stem cells using a well-defined extracellular matrix. Current methods rely on the use of Matrigel(™), a proprietary basement membrane-enriched extracellular matrix gel produced in mice that is not approved for clinical use. We demonstrate for the first time the capacity to support the long-term in vitro growth of murine intestinal epithelium in monoculture, using type I collagen. We further demonstrate successful in vivo engraftment of enteroids co-cultured with intestinal subepithelial myofibroblasts in collagen gel. Small intestinal crypts were isolated from 6 to 10 week old transgenic enhanced green fluorescent protein (eGFP+) mice and suspended within either Matrigel or collagen gel; cultures were supported using previously reported media and growth factors. After 1 week, cultures were either lysed for DNA or RNA extraction or were implanted subcutaneously in syngeneic host mice. Quantitative real-time polymerase chain reaction (qPCR) was performed to determine expansion of the transgenic eGFP-DNA and to determine the mRNA gene expression profile. Immunohistochemistry was performed on in vitro cultures and recovered in vivo explants. Small intestinal crypts reliably expanded to form enteroids in either Matrigel or collagen in both mono- and co-cultures as confirmed by microscopy and eGFP-DNA qPCR quantification. Collagen-based cultures yielded a distinct morphology with smooth enteroids and epithelial monolayer growth at the gel surface; both enteroid and monolayer cells demonstrated reactivity to Cdx2, E-cadherin, CD10, Periodic Acid-Schiff, and lysozyme. Collagen-based enteroids were successfully subcultured in vitro, whereas pure monolayer epithelial sheets did not survive passaging. Reverse transcriptase-polymerase chain reaction demonstrated evidence of Cdx2, villin 1, mucin 2, chromogranin A, lysozyme 1, and Lgr5 expression, suggesting a fully elaborated intestinal epithelium. Additionally, collagen-based enteroids co-cultured with myofibroblasts were successfully recovered after 5 weeks of in vivo implantation, with a preserved immunophenotype. These results indicate that collagen-based techniques have the capacity to eliminate the need for Matrigel in intestinal stem cell culture. This is a critical step towards producing neo-mucosa using good manufacturing practices for clinical applications in the future.


Assuntos
Colágeno/química , Matriz Extracelular/química , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Animais , Antígenos de Diferenciação/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Géis/química , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...