Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 23(11): e2300205, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37463112

RESUMO

Nanochaperones (nChaps) have significant potential to inhibit protein aggregation and assist in protein refolding. The interaction between nChaps and proteins plays an important role in nChaps performing chaperone-like functions, but the interaction mechanism remains elusive. In this work, a series of nChaps with tunable hydrophilic-hydrophobic surfaces are prepared, and the process of nChaps-assisted denatured protein refolding is systematically explored. It is found that an appropriate hydrophilic-hydrophobic balance on the nChap surface is critical for enhancing protein renaturation. This is because only the optimal interaction between nChap and protein can simultaneously guarantee the suitable capture and sufficient release of client proteins. The findings in this work will provide an effective reference for the design of nChaps and contribute to the development of the potential of nChaps in the future.


Assuntos
Chaperonas Moleculares , Dobramento de Proteína , Humanos , Redobramento de Proteína , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Desnaturação Proteica
2.
Sci Total Environ ; 702: 135030, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31715394

RESUMO

Trichloroethylene (TCE) has serious threat to ecosystem. Fe-Pd nanoparticles (NPs) are good materials for catalytic degradation of TCE but still face severe challenges including easy fouling, agglomeration, deactivation and difficult separation and reuse etc. To overcome these drawbacks, we have constructed a novel structured PVDF/Fe-Pd NPs composite membrane with nanosized surface pores to execute the TCE degradation. Results indicate the degradation shows pseudo first-order reaction kinetics and high degradation rate in the static state degradation. Furthermore, the degradation ability can be enhanced by increasing Fe and Pd contents, the degradation temperature or decreasing the degradation pH value. However, the degradation is essentially limited by the diffusion. Thus, the cross-flow degradation is further applied to promote the diffusion. By this operating model, the degradation ability of the composite membrane can be greatly improved. More importantly, the reactants always keep the purity in the membrane surface side and can be controlled to enter the membrane pore for catalytic degradation. Thus, products can be timely discharged via the membrane pores and the side reactions between reactants and products can be largely reduced. In addition, the nanosized surface pores can also prevent the Fe-Pd NPs from being fouled. In a word, the novel composite membrane shows strong degradation ability, good stability and convenient operating ability for the TEC catalytic degradation.

3.
ACS Nano ; 11(10): 10549-10557, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28968070

RESUMO

The folding process of a protein is inherently error-prone, owing to the large number of possible conformations that a protein chain can adopt. Partially folded or misfolded proteins typically expose hydrophobic surfaces and tend to form dysfunctional protein aggregates. Therefore, materials that can stabilize unfolded proteins and then efficiently assist them refolding to its bioactive form are of significant interest. Inspired by natural chaperonins, we have synthesized a series of polymeric nanochaperones that can facilitate the refolding of denatured proteins with a high recovery efficiency (up to 97%). Such nanochaperones possess phase-separated structure with hydrophobic microdomains on the surface. This structure allows nanochaperones to stabilize denatured proteins by binding them to the hydrophobic microdomains. We have also investigated the mechanism by which nanochaperones assist the protein refolding and established the design principles of nanochaperones in order to achieve effective recovery of a certain protein from their denatured forms. With a carefully designed composition of the microdomains according to the surface properties of the client proteins, the binding affinity between the hydrophobic microdomain and the denatured protein molecules can be tuned precisely, which enables the self-sorting of the polypeptides and the refolding of the proteins into their bioactive states. This work provides a feasible and effective strategy to recover inclusion bodies to their bioactive forms, which has potential to reduce the cost of the manufacture of recombinant proteins significantly.


Assuntos
Chaperonas Moleculares/química , Muramidase/química , Nanopartículas/química , Redobramento de Proteína , Chaperonas Moleculares/síntese química , Chaperonas Moleculares/metabolismo , Muramidase/síntese química , Muramidase/metabolismo , Tamanho da Partícula , Desnaturação Proteica , Propriedades de Superfície , Temperatura
4.
Langmuir ; 32(11): 2737-49, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26948309

RESUMO

Molecular chaperones can elegantly fine-tune its hydrophobic/hydrophilic balance to assist a broad spectrum of nascent polypeptide chains to fold properly. Such precious property is difficult to be achieved by chaperone mimicking materials due to limited control of their surface characteristics that dictate interactions with unfolded protein intermediates. Mixed shell polymeric micelles (MSPMs), which consist of two kinds of dissimilar polymeric chains in the micellar shell, offer a convenient way to fine-tune surface properties of polymeric nanoparticles. In the current work, we have fabricated ca. 30 kinds of MSPMs with finely tunable hydrophilic/hydrophobic surface properties. We investigated the respective roles of thermosensitive and hydrophilic polymeric chains in the thermodenaturation protection of proteins down to the molecular structure. Although the three kinds of thermosensitive polymers investigated herein can form collapsed hydrophobic domains on the micellar surface, we found distinct capability to capture and release unfolded protein intermediates, due to their respective affinity for proteins. Meanwhile, in terms of the hydrophilic polymeric chains in the micellar shell, poly(ethylene glycol) (PEG) excels in assisting unfolded protein intermediates to refold properly via interacting with the refolding intermediates, resulting in enhanced chaperone efficiency. However, another hydrophilic polymer-poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) severely deteriorates the chaperone efficiency of MSPMs, due to its protein-resistant properties. Judicious combination of thermosensitive and hydrophilic chains in the micellar shell lead to MSPM-based artificial chaperones with optimal efficacy.


Assuntos
Micelas , Fosforilcolina/análogos & derivados , Ácidos Polimetacrílicos/química , Desnaturação Proteica , Redobramento de Proteína , Materiais Biomiméticos , Anidrase Carbônica I/química , Dicroísmo Circular , Difusão Dinâmica da Luz , Etilenoglicóis/síntese química , Etilenoglicóis/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão , Fosforilcolina/síntese química , Fosforilcolina/química , Poliésteres/síntese química , Poliésteres/química , Propriedades de Superfície , Temperatura
5.
ACS Appl Mater Interfaces ; 8(6): 3669-78, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26570996

RESUMO

Artificial chaperones are of great interest in fighting protein misfolding and aggregation for the protection of protein bioactivity. A comprehensive understanding of the interaction between artificial chaperones and proteins is critical for the effective utilization of these materials in biomedicine. In this work, we fabricated three kinds of artificial chaperones with different surface charges based on mixed-shell polymeric micelles (MSPMs), and investigated their protective effect for lysozymes under thermal stress. It was found that MSPMs with different surface charges showed distinct chaperone-like behavior, and the neutral MSPM with PEG shell and PMEO2MA hydrophobic domain at high temperature is superior to the negatively and positively charged one, because of the excessive electrostatic interactions between the protein and charged MSPMs. The results may benefit to optimize this kind of artificial chaperone with enhanced properties and expand their application in the future.


Assuntos
Proteínas Aviárias/química , Micelas , Chaperonas Moleculares/química , Muramidase/química , Polietilenoglicóis/química , Redobramento de Proteína , Animais , Galinhas , Temperatura Alta , Humanos , Desnaturação Proteica
6.
ACS Appl Mater Interfaces ; 7(19): 10238-49, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25939050

RESUMO

Controlled and reversible interactions between polymeric nanoparticles and proteins have gained more and more attention with the hope to address many biological issues such as prevention of protein denaturation, interference of the fibrillation of disease relative proteins, removing of toxic biomolecules as well as targeting delivery of proteins, etc. In such cases, proper analytic techniques are needed to reveal the underlying mechanism of the particle-protein interactions. In the current work, Förster Resonance Energy Transfer (FRET) was used to investigate the interaction of our tailor designed artificial chaperone based on mixed shell polymeric micelles (MSPMs) with their substrate proteins. We designed a new kind of MSPMs with fluorescent acceptors precisely placed at the desired locations as well as hydrophobic domains which can adsorb unfolded proteins with a propensity to aggregate. Interactions of such model micelles with a donor-labeled protein-FITC-lysozyme, was monitored by FRET. The fabrication strategy of MSPMs makes it possible to control the accurate location of the acceptor, which is critical to reveal some unexpected insights of the micelle-protein interactions upon heating and cooling. Preadsorption of native proteins onto the hydrophobic domains of the MSPMs is a key step to prevent thermo-denaturation by diminishing interprotein aggregations. Reversible protein adsorption during heating and releasing during cooling have been confirmed. Conclusions from the FRET effect are in line with the measurement of residual enzymatic activity.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Chaperonas Moleculares/química , Muramidase/química , Nanocápsulas/química , Adsorção , Teste de Materiais , Micelas , Chaperonas Moleculares/ultraestrutura , Muramidase/ultraestrutura , Nanocápsulas/ultraestrutura , Porosidade , Ligação Proteica , Mapeamento de Interação de Proteínas
7.
Angew Chem Int Ed Engl ; 53(34): 8985-90, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24985739

RESUMO

The disruption of Aß homeostasis, which results in the accumulation of neurotoxic amyloids, is the fundamental cause of Alzheimer's disease (AD). Molecular chaperones play a critical role in controlling undesired protein misfolding and maintaining intricate proteostasis in vivo. Inspired by a natural molecular chaperone, an artificial chaperone consisting of mixed-shell polymeric micelles (MSPMs) has been devised with tunable surface properties, serving as a suppressor of AD. Taking advantage of biocompatibility, selectivity toward aberrant proteins, and long blood circulation, these MSPM-based chaperones can maintain Aß homeostasis by a combination of inhibiting Aß fibrillation and facilitating Aß aggregate clearance and simultaneously reducing Aß-mediated neurotoxicity. The balance of hydrophilic/hydrophobic moieties on the surface of MSPMs is important for their enhanced therapeutic effect.


Assuntos
Peptídeos beta-Amiloides/química , Homeostase , Micelas , Chaperonas Moleculares/química , Polímeros/química , Dicroísmo Circular , Cinética , Microscopia Eletrônica de Transmissão , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...