Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38657125

RESUMO

Cuprous thiocyanate (CuSCN) emerges as a prime candidate among inorganic hole-transport materials, particularly suitable for the fabrication of perovskite solar cells. Nonetheless, there is an Ohmic contact degradation between the perovskite and CuSCN layers. This is induced by polar solvents and undesired purities, which reduce device efficiency and operational stability. In this work, we introduce amidinothiourea (ASU) as an intermediate layer between perovskites and CuSCN to overcome the above obstacles. The characterization results confirm that ASU-modified perovskites have eliminated trap-induced defects by strong chemical bonding between -NH- and C═S from ASU and under-coordinated ions in perovskites. The interfacial engineering based on the ASU also reduces the potential barrier between the perovskite and CuSCN layers. The ASU-treated perovskite solar cells (PSC) with a gold electrode obtains an improved power conversion efficiency (PCE) from 16.36 to 18.03%. Furthermore, after being stored for 1800 h in ambient air (relative humidity (RH) = 45%), the related device without encapsulation maintains over 90% of its initial efficiency. The further combination of ASU and carbon-tape electrodes demonstrates its potential to fabricate low-cost but stable carbon-based PSCs. This work finds a universal approach for the fabrication of efficient and stable PSCs with different device structures.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38662416

RESUMO

Electron-beam-evaporated nickel oxide (NiOx) films are known for their high quality, precise control, and suitability for complex structures in perovskite (PVK) solar cells (PSCs). However, untreated NiOx films have inherent challenges, such as surface defects, relatively low intrinsic conductivity, and shallow valence band maximum, which seriously restrict the efficiency and stability of the devices. To address these challenges, we employ a dual coordination optimization strategy. The strategy includes low heating rate annealing of NiOx films and using an aminoguanidine nitrate spin coating process on the surfaces of NiOx films to strategically modify NiOx films itself and the interface of NiOx/PVK. Under the synergistic effect of this dual optimization method, the quality of the films is significantly improved and its p-type characteristics are enhanced. At the same time, the interface defects and energy level alignment of the films are effectively improved, and the charge extraction ability at the interface is improved. The combined treatment significantly improved the efficiency of inverted PSCs, from 17.85% to 20.31%, and enhanced device stability under various conditions. This innovative dual-coordinated optimization strategy provides a clear and effective framework for improving the performance of NiOx films and inverted PSCs.

3.
ACS Appl Mater Interfaces ; 16(7): 9388-9399, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324460

RESUMO

Bifacial passivation on both electron transport materials and perovskite light-absorbing layers as a straightforward technique is used for gaining efficient and stable perovskite solar cells (PSCs). To develop this strategy, organic molecules containing multiple functional groups can maximize the effect of defect suppression. Based on this, we introduce N-(2-acetamido)-2-aminoethanesulfonic acid (ACES) at the interface between tin oxide (SnO2) and perovskite. The synergistic effect of multiple functional groups in ACES, including amino, carbonyl (C═O), and sulfonic acid (S═O) groups, promotes charge extraction of SnO2 and provides an improved energy level alignment for charge transfer. Furthermore, S═O in ACES effectively passivates the defects of uncoordinated Pb2+ in perovskite films, resulting in enhanced crystallinity and decreased nonradiative recombination at the buried interface. The power conversion efficiency (PCE) of related PSCs increases from 20.21% to 22.65% with reduced J-V hysteresis after interface modification with ACES. Notably, upon being stored at a low relative humidity of 40 ± 5% over 2000 h and high relative humidity of 80 ± 5% over 1000 h, the unencapsulated ACES-modified device retains up to 90% and 80% of their initial PCE, respectively. This study deepens defect passivation engineering on the buried interface of perovskites for realizing efficient and stable solar cells.

4.
ACS Omega ; 8(45): 43060-43073, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024744

RESUMO

In order to improve the CO2 injection and CH4 production efficiencies during the CO2-ECBM process, it is necessary to clarify the relationship among the complexity of pore and fracture structures, the typicality of the fluid migration path, and the heterogeneity of reservoir permeability. In this study, crushed soft coal with low permeability from Huainan and Huaibei coalfields of China was taken as the research object. First, the three-dimensional (3D) visualization reconstruction of pore and fracture structures was realized. Second, the equivalent pore and fracture network model was constructed. Finally, the permeability evolution and its anisotropy of the coal reservoir were dynamically demonstrated. In this study, the implication of surface porosity on the heterogeneity of pore and fracture structures was first discussed, followed by the implication of coordination number on the anisotropy of fluid flow, and finally, the influence of the anisotropy of fluid flow on the CO2-ECBM process was discussed. The results show that the equivalent pore and fracture network models of the reservoir structure can be constructed based on the digital rock physics technology. The analysis results of porosity, interconnected porosity, typical path of fluid migration, absolute permeability, and surface porosity of each sample have good consistency in characterizing the complexity of pore and fracture structures and the heterogeneity of permeability. The average coordination numbers of RL and LZ samples are 5.99 and 5.78, respectively, and the number of pores and throats is well-balanced, which indicates that LZ and RL collieries are suitable for the development of CO2-ECBM industrial tests. When the interconnected pores and fractures are mainly developed vertically and horizontally, the construction of drilling technology of the CO2-ECBM process should be mainly designed for vertical wells and horizontal wells, respectively. This study has important theoretical and practical significance for the industrial testing and commercialization of CO2-ECBM technology in crushed soft coal with low permeability.

5.
Cell Host Microbe ; 31(11): 1930-1943.e4, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37944495

RESUMO

The effect of gut bacteria on the response to immune checkpoint inhibitors (ICIs) has been studied, but the relationship between fungi and ICI responses is not fully understood. Herein, 862 fecal metagenomes from 9 different cohorts were integrated for the identification of differentially abundant fungi and subsequent construction of random forest (RF) models to predict ICI responses. Fungal markers demonstrate excellent performance, with an average area under the curve (AUC) of 0.87. Their performance improves even further, reaching an average AUC of 0.89 when combined with bacterial markers. Higher enrichment of exhausted T cells is detected in responders, as predicted by fungal markers. Multi-kingdom network and functional analysis reveal that the fungus Schizosaccharomyces octosporus may ferment starch into short-chain fatty acids in responders. This study provides a fungal profile of the ICI response and the identification of multi-kingdom microbial markers with good performance that may improve the overall applicability of ICI therapy.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Humanos , Metagenoma , Imunoterapia , Bactérias/genética , Neoplasias/terapia
6.
Artigo em Inglês | MEDLINE | ID: mdl-37882603

RESUMO

The power conversion efficiency (PCE) of perovskite solar cells has improved quickly in the past few years, but the PCE is still much lower than the theoretical limit. The relatively high energy loss (Eloss) is one of the critical factors limiting the PCE. To resolve the above issues, a synergistic modification strategy was used herein to minimize Eloss. RbCl and potassium polyacrylate (K-PAM) were used to modify the SnO2 layer. Additionally, Pb(Ac)2 was introduced into PbI2 to further improve the film quality. The synergistic modification strategy reduced the defects in SnO2 and perovskite and improved the energy-level alignment, enabling significantly reduced Eloss and enhanced photovoltaic performance. The best PCE of 24.07% was achieved, which was much higher than that of the control device (20.86%). The Eloss was only 0.349 eV for the target device. Good stability was achieved for the cells made using modified SnO2 and perovskite layers.

7.
Front Netw Physiol ; 3: 1168677, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744179

RESUMO

The brain plays central role in regulating physiological systems, including the skeleto-muscular and locomotor system. Studies of cortico-muscular coordination have primarily focused on associations between movement tasks and dynamics of specific brain waves. However, the brain-muscle functional networks of synchronous coordination among brain waves and muscle activity rhythms that underlie locomotor control remain unknown. Here we address the following fundamental questions: what are the structure and dynamics of cortico-muscular networks; whether specific brain waves are main network mediators in locomotor control; how the hierarchical network organization relates to distinct physiological states under autonomic regulation such as wake, sleep, sleep stages; and how network dynamics are altered with neurodegenerative disorders. We study the interactions between all physiologically relevant brain waves across cortical locations with distinct rhythms in leg and chin muscle activity in healthy and Parkinson's disease (PD) subjects. Utilizing Network Physiology framework and time delay stability approach, we find that 1) each physiological state is characterized by a unique network of cortico-muscular interactions with specific hierarchical organization and profile of links strength; 2) particular brain waves play role as main mediators in cortico-muscular interactions during each state; 3) PD leads to muscle-specific breakdown of cortico-muscular networks, altering the sleep-stage stratification pattern in network connectivity and links strength. In healthy subjects cortico-muscular networks exhibit a pronounced stratification with stronger links during wake and light sleep, and weaker links during REM and deep sleep. In contrast, network interactions reorganize in PD with decline in connectivity and links strength during wake and non-REM sleep, and increase during REM, leading to markedly different stratification with gradual decline in network links strength from wake to REM, light and deep sleep. Further, we find that wake and sleep stages are characterized by specific links strength profiles, which are altered with PD, indicating disruption in the synchronous activity and network communication among brain waves and muscle rhythms. Our findings demonstrate the presence of previously unrecognized functional networks and basic principles of brain control of locomotion, with potential clinical implications for novel network-based biomarkers for early detection of Parkinson's and neurodegenerative disorders, movement, and sleep disorders.

8.
J Gastroenterol Hepatol ; 38(10): 1768-1777, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37259282

RESUMO

BACKGROUND: Colorectal cancer (CRC) incidence has increased among patients aged <50 years. Exploring high-risk factors and screening high-risk populations may help lower early-onset CRC (EO-CRC) incidence. We developed noninvasive predictive models for EO-CRC and investigated its risk factors. METHODS: This retrospective multicenter study collected information on 1756 patients (811 patients with EO-CRC and 945 healthy controls) from two medical centers in China. Sociodemographic features, clinical symptoms, medical and family history, lifestyle, and dietary factors were measured. Patients from one cohort were randomly assigned (8:2) to two groups for model establishment and internal validation, and another independent cohort was used for external validation. Multivariable logistic regression, random forest, and eXtreme Gradient Boosting (XGBoost) were performed to establish noninvasive predictive models for EO-CRC. Some variables in the model influenced EO-CRC occurrence and were further analyzed. Multivariable logistic regression analysis yielded adjusted odd ratios (ORs) and 95% confidence intervals (CIs). RESULTS: All three models showed good performance, with areas under the receiver operator characteristic curves (AUCs) of 0.82, 0.84, and 0.82 in the internal and 0.78, 0.79, and 0.78 in the external validation cohorts, respectively. Consumption of sweet (OR 2.70, 95% CI 1.89-3.86, P < 0.001) and fried (OR 2.16, 95% CI 1.29-3.62, P < 0.001) foods ≥3 times per week was significantly associated with EO-CRC occurrence. CONCLUSION: We established noninvasive predictive models for EO-CRC and identified multiple nongenetic risk factors, especially sweet and fried foods. The model has good performance and can help predict the occurrence of EO-CRC in the Chinese population.


Assuntos
Neoplasias Colorretais , Estilo de Vida , Humanos , Povo Asiático , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/etiologia , Estudos Retrospectivos , Fatores de Risco , Distribuição Aleatória
9.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240100

RESUMO

SPX-domain proteins (small proteins with only the SPX domain) have been proven to be involved in phosphate-related signal transduction and regulation pathways. Except for OsSPX1 research showing that it plays a role in the process of rice adaptation to cold stress, the potential functions of other SPX genes in cold stress are unknown. Therefore, in this study, we identified six OsSPXs from the whole genome of DXWR. The phylogeny of OsSPXs has a strong correlation with its motif. Transcriptome data analysis showed that OsSPXs were highly sensitive to cold stress, and real-time PCR verified that the levels of OsSPX1, OsSPX2, OsSPX4, and OsSPX6 in cold-tolerant materials (DXWR) during cold treatment were higher than that of cold-sensitive rice (GZX49). The promoter region of DXWR OsSPXs contains a large number of cis-acting elements related to abiotic stress tolerance and plant hormone response. At the same time, these genes have expression patterns that are highly similar to cold-tolerance genes. This study provides useful information about OsSPXs, which is helpful for the gene-function research of DXWR and genetic improvements during breeding.


Assuntos
Oryza , Oryza/fisiologia , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Temperatura Baixa
10.
Cancer Res ; 83(14): 2358-2371, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37195082

RESUMO

Colorectal carcinogenesis coincides with immune cell dysfunction. Metformin has been reported to play a role in stimulating antitumor immunity, suggesting it could be used to overcome immunosuppression in colorectal cancer. Herein, using single-cell RNA sequencing (scRNA-seq), we showed that metformin remodels the immune landscape of colorectal cancer. In particular, metformin treatment expanded the proportion of CD8+ T cells and potentiated their function. Analysis of the metabolic activities of cells in the colorectal cancer tumor microenvironment (TME) at a single-cell resolution demonstrated that metformin reprogrammed tryptophan metabolism, which was reduced in colorectal cancer cells and increased in CD8+ T cells. Untreated colorectal cancer cells outcompeted CD8+ T cells for tryptophan, leading to impaired CD8+ T-cell function. Metformin in turn reduced tryptophan uptake by colorectal cancer cells, thereby restoring tryptophan availability for CD8+ T cells and increasing their cytotoxicity. Metformin inhibited tryptophan uptake in colorectal cancer cells by downregulating MYC, which led to a reduction in the tryptophan transporter SLC7A5. This work highlights metformin as an essential regulator of T-cell antitumor immunity by reprogramming tryptophan metabolism, suggesting it could be a potential immunotherapeutic strategy for treating colorectal cancer. SIGNIFICANCE: Analysis of the impact of metformin on the colorectal cancer immunometabolic landscape at a single-cell resolution shows that metformin alters cancer cell tryptophan metabolism to stimulate CD8+ T-cell antitumor activity.


Assuntos
Neoplasias Colorretais , Metformina , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Triptofano , Linfócitos T CD8-Positivos , Terapia de Imunossupressão , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Microambiente Tumoral
11.
ACS Omega ; 8(13): 12430-12438, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033797

RESUMO

The vapor-solid reaction method (VRM) is one of the promising techniques to prepare high-performance perovskite solar cells. Herein, PbI2 precursor films were prepared by vacuum evaporation. It was found that the PbI2 precursor films exhibit high crystallinity and orderly morphology at the substrate temperature of 110 °C. On this basis, the precursor films were prepared by VRM to obtain high-quality perovskite films and the power conversion efficiency (PCE) of perovskite solar cells (PSCs) devices reached 17.1%. In contrast, the PbI2 film precursor was prepared on the substrate without being heated and the PCE of the final PSCs devices was only 13.04%.

12.
Nat Microbiol ; 8(5): 919-933, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37069401

RESUMO

Epidemiological studies have indicated an association between statin use and reduced incidence of colorectal cancer (CRC), and work in preclinical models has demonstrated a potential chemopreventive effect. Statins are also associated with reduced dysbiosis in the gut microbiome, yet the role of the gut microbiome in the protective effect of statins in CRC is unclear. Here we validated the chemopreventive role of statins by retrospectively analysing a cohort of patients who underwent colonoscopies. This was confirmed in preclinical models and patient cohorts, and we found that reduced tumour burden was partly due to statin modulation of the gut microbiota. Specifically, the gut commensal Lactobacillus reuteri was increased as a result of increased microbial tryptophan availability in the gut after atorvastatin treatment. Our in vivo studies further revealed that L. reuteri administration suppressed colorectal tumorigenesis via the tryptophan catabolite, indole-3-lactic acid (ILA). ILA exerted anti-tumorigenic effects by downregulating the IL-17 signalling pathway. This microbial metabolite inhibited T helper 17 cell differentiation by targeting the nuclear receptor, RAR-related orphan receptor γt (RORγt). Together, our study provides insights into an anti-cancer mechanism driven by statin use and suggests that interventions with L. reuteri or ILA could complement chemoprevention strategies for CRC.


Assuntos
Neoplasias Colorretais , Inibidores de Hidroximetilglutaril-CoA Redutases , Limosilactobacillus reuteri , Microbiota , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Triptofano , Estudos Retrospectivos , Neoplasias Colorretais/prevenção & controle
13.
BMC Biol ; 21(1): 20, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726089

RESUMO

BACKGROUND: DNA mutations of diverse types provide the raw material required for phenotypic variation and evolution. In the case of crop species, previous research aimed to elucidate the changing patterns of repetitive sequences, single-nucleotide polymorphisms (SNPs), and small InDels during domestication to explain morphological evolution and adaptation to different environments. Additionally, structural variations (SVs) encompassing larger stretches of DNA are more likely to alter gene expression levels leading to phenotypic variation affecting plant phenotypes and stress resistance. Previous studies on SVs in rice were hampered by reliance on short-read sequencing limiting the quantity and quality of SV identification, while SV data are currently only available for cultivated rice, with wild rice largely uncharacterized. Here, we generated two genome assemblies for O. rufipogon using long-read sequencing and provide insights on the evolutionary pattern and effect of SVs on morphological traits during rice domestication. RESULTS: In this study, we identified 318,589 SVs in cultivated and wild rice populations through a comprehensive analysis of 13 high-quality rice genomes and found that wild rice genomes contain 49% of unique SVs and an average of 1.76% of genes were lost during rice domestication. These SVs were further genotyped for 649 rice accessions, their evolutionary pattern during rice domestication and potential association with the diversity of important agronomic traits were examined. Genome-wide association studies between these SVs and nine agronomic traits identified 413 candidate causal variants, which together affect 361 genes. An 824-bp deletion in japonica rice, which encodes a serine carboxypeptidase family protein, is shown to be associated with grain length. CONCLUSIONS: We provide relatively accurate and complete SV datasets for cultivated and wild rice accessions, especially in TE-rich regions, by comparing long-read sequencing data for 13 representative varieties. The integrated rice SV map and the identified candidate genes and variants represent valuable resources for future genomic research and breeding in rice.


Assuntos
Domesticação , Oryza , Genoma de Planta , Oryza/genética , Estudo de Associação Genômica Ampla , Variação Genética , Melhoramento Vegetal , Fenótipo
14.
Curr Top Med Chem ; 23(1): 17-29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36443977

RESUMO

Scutellaria baicalensis georgi, known as "Huangqin" in its dried root form, is a herb widely used in traditional Chinese medicine for "clearing away heat, removing dampness, purging fire and detoxification". Baicalin, baicalein, wogonin, and wogonoside are the main flavonoid compounds found in Scutellaria baicalensis. Scutellaria baicalensis flavonoid components have the potential to prevent and treat a host of diseases. The components of S. baicalensis have limited clinical application due to their low water solubility, poor permeability, and microbial transformation in vivo. Nanopharmaceutical techniques can improve their biopharmaceutical properties, enhance their absorption in vivo, and improve their bioavailability. However, due to the limited number of clinical trials, doubts remain about their toxicity and improvements in human absorption as a result of nanoformulations. This review summarizes the latest and most comprehensive information regarding the absorption, distribution, metabolism, and excretion of the Scutellaria baicalensis components in vivo. We examined the main advantages of nanodrug delivery systems and collected detailed information on the nanosystem delivery of the Scutellaria baicalensis components, including nanosuspensions and various lipid-based nanosystems. Lipid-based systems including liposomes, solid lipid nanoparticles, nanoemulsions, and self-micro emulsifying drug delivery systems are introduced in detail. In addition, we make recommendations for related and future research directions. Future research should further examine the absorption mechanisms and metabolic pathways of nanoformulations of the components of Scutellaria baicalensis in vivo, and accurately track the in vivo behavior of these drug delivery systems to discover the specific reasons for the enhanced bioavailability of nanoformulations of the scutellaria baicalensis components. The development of targeted oral administration of intact nanoparticles of Scutellaria baicalensis components is an exciting prospect.


Assuntos
Produtos Biológicos , Flavanonas , Humanos , Scutellaria baicalensis , Extratos Vegetais/uso terapêutico , Flavonoides , Medicina Tradicional Chinesa , Lipídeos
15.
Br J Cancer ; 128(2): 363-374, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396820

RESUMO

BACKGROUND: Chemotherapy resistance is the major cause of recurrence in patients with colorectal cancer (CRC). A previous study found that Fusobacterium (F.) nucleatum promoted CRC chemoresistance. Additionally, metformin rescued F. nucleatum-induced tumorigenicity of CRC. Here, we aimed to investigate whether metformin could revert F. nucleatum-induced chemoresistance and explore the mechanism. METHODS: The role of metformin in F. nucleatum-infected CRC cells was confirmed using cell counting kit 8 assays and CRC xenograft mice. Stemness was identified by tumorsphere formation. Bioinformatic analyses were used to explore the regulatory molecules involved in metformin and F. nucleatum-mediated regulation of the sonic hedgehog pathway. RESULTS: We found that metformin abrogated F. nucleatum-promoted CRC resistance to chemotherapy. Furthermore, metformin attenuated F. nucleatum-stimulated stemness by inhibiting sonic hedgehog signaling. Mechanistically, metformin diminished sonic hedgehog signaling proteins by targeting the MYC/miR-361-5p cascade to reverse F. nucleatum-induced stemness, thereby rescuing F. nucleatum-triggered chemoresistance in CRC. CONCLUSIONS: Metformin acts on F. nucleatum-infected CRC via the MYC/miR-361-5p/sonic hedgehog pathway cascade, subsequently reversing stemness and abolishing F. nucleatum-triggered chemoresistance. Our results identified metformin intervention as a potential clinical treatment for patients with chemoresistant CRC with high amounts of F. nucleatum.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Hedgehog/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Fusobacterium nucleatum , Resistencia a Medicamentos Antineoplásicos/genética
16.
Microbiome ; 10(1): 196, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36419170

RESUMO

BACKGROUND: The assembly of the rhizomicrobiome, i.e., the microbiome in the soil adhering to the root, is influenced by soil conditions. Here, we investigated the core rhizomicrobiome of a wild plant species transplanted to an identical soil type with small differences in chemical factors and the impact of these soil chemistry differences on the core microbiome after long-term cultivation. We sampled three natural reserve populations of wild rice (i.e., in situ) and three populations of transplanted in situ wild rice grown ex situ for more than 40 years to determine the core wild rice rhizomicrobiome. RESULTS: Generalized joint attribute modeling (GJAM) identified a total of 44 amplicon sequence variants (ASVs) composing the core wild rice rhizomicrobiome, including 35 bacterial ASVs belonging to the phyla Actinobacteria, Chloroflexi, Firmicutes, and Nitrospirae and 9 fungal ASVs belonging to the phyla Ascomycota, Basidiomycota, and Rozellomycota. Nine core bacterial ASVs belonging to the genera Haliangium, Anaeromyxobacter, Bradyrhizobium, and Bacillus were more abundant in the rhizosphere of ex situ wild rice than in the rhizosphere of in situ wild rice. The main ecological functions of the core microbiome were nitrogen fixation, manganese oxidation, aerobic chemoheterotrophy, chemoheterotrophy, and iron respiration, suggesting roles of the core rhizomicrobiome in improving nutrient resource acquisition for rice growth. The function of the core rhizosphere bacterial community was significantly (p < 0.05) shaped by electrical conductivity, total nitrogen, and available phosphorus present in the soil adhering to the roots. CONCLUSION: We discovered that nitrogen, manganese, iron, and carbon resource acquisition are potential functions of the core rhizomicrobiome of the wild rice Oryza rufipogon. Our findings suggest that further potential utilization of the core rhizomicrobiome should consider the effects of soil properties on the abundances of different genera. Video Abstract.


Assuntos
Oryza , Oryza/microbiologia , Nitrogênio , Carbono , Manganês , Ferro , Bactérias/genética , Solo
17.
Nanomaterials (Basel) ; 12(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36234469

RESUMO

Regardless of its good electron-transfer ability and chemical stability, pure Zn2SnO4 (ZSO) still has intrinsic deficiencies of a narrow spectral response region, poor absorption ability, and high photo-activated carrier recombination rate. Aiming to overcome the deficiencies above-mentioned, we designed a facile hydrothermal route for etching ZSO nanoparticles in a dilute acetic acid solution, through which efficient oxygen vacancy defect engineering was accomplished and SnO2-x nanocrystals were obtained with an ultrafine particle size. In comparison with the untreated ZSO nanoparticles, the specific surface area of SnO2-x nanocrystals was substantially enlarged, subsequently leading to the notable augmentation of active sites for the photo-degradation reaction. Aside from the above, it is worth noting that SnO2-x nanocrystals were endowed with a broad spectral response, enhancing light absorption capacity and the photo-activated carrier transfer rate with the aid of oxygen vacancy defect engineering. Accordingly, SnO2-x nanocrystals exhibited significantly enhanced photoactivity toward the degradation of the organic dye rhodamine B (RhB), which could be imputed to the synergistic effect of increasing active sites, intensified visible-light harvesting, and the separation rate of the photo-activated charge carrier caused by the oxygen vacancy defect engineering. In addition, these findings will inspire us to open up a novel pathway to design and prepare oxide compound photocatalysts modified by oxygen vacancy defects in pursuing excellent visible-light photoactivity.

18.
Plants (Basel) ; 11(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36145730

RESUMO

Rice, a cold-sensitive crop, is a staple food for more than 50% of the world's population. Low temperature severely compromises the growth of rice and challenges China's food safety. Dongxiang wild rice (DXWR) is the most northerly common wild rice in China and has strong cold tolerance, but the genetic basis of its cold tolerance is still unclear. Here, we report quantitative trait loci (QTLs) analysis for seedling cold tolerance (SCT) using a high-density single nucleotide polymorphism linkage map in the backcross recombinant inbred lines that were derived from a cross of DXWR, and an indica cultivar, GZX49. A total of 10 putative QTLs were identified for SCT under 4 °C cold treatment, each explaining 2.0-6.8% of the phenotypic variation in this population. Furthermore, transcriptome sequencing of DXWR seedlings before and after cold treatment was performed, and 898 and 3413 differentially expressed genes (DEGs) relative to 0 h in cold-tolerant for 4 h and 12 h were identified, respectively. Gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) analysis were performed on these DEGs. Using transcriptome data and genetic linkage analysis, combined with qRT-PCR, sequence comparison, and bioinformatics, LOC_Os08g04840 was putatively identified as a candidate gene for the major effect locus qSCT8. These findings provided insights into the genetic basis of SCT for the improvement of cold stress potential in rice breeding programs.

19.
Curr Issues Mol Biol ; 44(8): 3351-3363, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36005127

RESUMO

The DUF26 domain-containing protein is an extracellular structural protein, which plays an important role in signal transduction. Dongxiang wild rice (Oryza rufipogon Griff.) is the northern-most common wild rice in China. Using domain analysis, 85 DUF26 domain-containing genes were identified in Dongxiang wild rice (DXWR) and further divided into four categories. The DUF26 domain-containing genes were unevenly distributed on chromosomes, and there were 18 pairs of tandem repeats. Gene sequence analysis showed that there were significant differences in the gene structure and motif distribution of the DUF26 domain in different categories. Motifs 3, 8, 9, 13, 14, 16, and 18 were highly conserved in all categories. It was also found that there were eight plasmodesmata localization proteins (PDLPs) with a unique motif 19. Collinearity analysis showed that DXWR had a large number of orthologous genes with wheat, maize, sorghum and zizania, of which 17 DUF26 domain-containing genes were conserved in five gramineous crops. Under the stress of anaerobic germination and seedling submergence treatment, 33 DUF26 domain-containing genes were differentially expressed in varying degrees. Further correlation analysis with the expression of known submergence tolerance genes showed that these DUF26 domain-containing genes may jointly regulate the submergence tolerance process with these known submergence tolerance genes in DXWR.

20.
Microorganisms ; 10(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35889186

RESUMO

Wild rice is an important improved resource for cultivated rice and its unique ability to resist biotic and abiotic stress has attracted the attention of many scholars. The microbial community structure in the rhizosphere and leaf area of different rice varieties is also different, which may be one of the reasons for the difference in stress resistance between wild rice and cultivated rice. Forty-six bacteria were screened from the rhizosphere and phyllospheric of four different wild rice varieties. The results of functions of the screened strains showed that 18 strains had a good inhibitory effect on rice blast, and 33 strains had the ability to dissolve phosphorus, potassium, or fix nitrogen. Through potted experiment, the three bacterial strains, 499G2 (Peribacillus simplex), 499G3 (Bacillus velezensis), and 499G4 (B. megaterium) have a positive effect on the growth of cultivated rice in addition to the resistance to rice blast. The contents of total nitrogen, total phosphorus, total potassium, indole acetic acid (IAA), and chlorophyll in plant leaves were increased. In addition, in the verification test of rice blast infection, the application of inoculants can significantly reduce the content of malondialdehyde (MDA), increase the content of soluble sugar, and increase the activity of plant antioxidant enzymes, which may thereby improve rice in resisting to rice blast.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...