Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 33(6): 1475-1481, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35729122

RESUMO

Long-term fertilization causes the differences in water, heat, nutrients and microbial activities between topsoil and deep soil, with consequences on the decomposition and turnover of straw carbon (C) in soils. At a long-term positioning experimental station in Shenyang Agricultural University, we mixed the topsoil (0-20 cm) and deep soil (40-60 cm) samples from different fertilization treatments with 13C-labeled straw for in-situ incubation. We analyzed the content of organic C and its δ13C value in soil aggregates, compared the difference in the distribution of straw C between topsoil and deep soil aggregates, and explored the effects of fertilization on the sequestration of straw C in soil aggregates. Compared with fertilization treatments (i.e., single chemical nitrogen fertilizer application and combination of organic manure with nitrogen fertilizer application), the treatment without fertilization increased the content of straw C of <0.053 mm aggregate in the topsoil by 106.7% and that of >0.25 mm aggregate in the deep soil by 34.2%. The contribution percentage of straw C to organic C of >0.053 mm aggregate in the deep soil was about two times of that in the topsoil. About 22.6% and 11.4% of straw C was distributed into the >0.25 mm and <0.25 mm aggregates of topsoil, and about 29.4% and 8.8% of straw C was distributed into the >0.25 mm and <0.25 mm aggregates of deep soil, respectively. In conclusion, straw addition promoted the regeneration and sequestration of carbon in deep soil macroaggregates and increased the carbon sequestration potential of deep soil.


Assuntos
Carbono , Solo , Agricultura , Sequestro de Carbono , Fertilização , Fertilizantes , Humanos , Nitrogênio/análise , Solo/química
2.
Ying Yong Sheng Tai Xue Bao ; 31(9): 2985-2992, 2020 Sep 15.
Artigo em Chinês | MEDLINE | ID: mdl-33345499

RESUMO

Phosphorus is a key nutrient for all plant species and a limiting factor for grassland ecosystem function. In recent years, in response to the rapid increase of global nitrogen deposition, soil phosphorus contents and phosphatase activities changed to varying degrees in grassland ecosystems. We conducted a meta-analysis to examine the responses of soil pH, total phosphorus (TP), available phosphorus (AP), as well as activities of alkaline phosphatase (AlP) and acid phosphatase (AcP) in soils to nitrogen addition amount, nitrogen type, experimental duration, and sampling depth. The correlation between soil pH and phosphatase response ratio was investigated. The results showed that nitrogen addition significantly reduced soil pH, TP and AlP activity, while significantly increased AcP activity, but had no significant effect on AP. Soil pH and AlP activity significantly decreased under nitrogen addition >5 g·m-2·a-1, and AcP activity significantly increased under high nitrogen addition (>10 g·m-2·a-1). The contents of TP and AP significantly decreased when nitrogen addition was 5-10 g·m-2·a-1. NH4NO3 treatment significantly reduced soil TP and increased AcP activity, while urea treatment significantly reduced soil pH and AlP activity. Across all nitrogen addition amounts, when the experiment duration was 3 to 10 years, soil TP content and AlP activity were significantly reduced. Soil pH was significantly reduced after three years nitrogen addition, and AcP activitiy was significantly increased after 10 years nitrogen addition. In the 0-10 cm soil layer, the TP content and AlP activity significantly decreased, while the AP content significantly increased. In >10 cm soil layer, the AP content was significantly decreased. The significant negative correlation between soil pH and AcP activity indicated that change in soil pH caused by nitrogen addition may be an important factor for the variation of soil phosphatase activity.


Assuntos
Nitrogênio , Fósforo , China , Ecossistema , Pradaria , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Fósforo/análise , Solo
3.
Ying Yong Sheng Tai Xue Bao ; 31(5): 1459-1466, 2020 May.
Artigo em Chinês | MEDLINE | ID: mdl-32530222

RESUMO

Long-term fertilization can change the supply of soil carbon and nitrogen (N), with consequences on the abundance and community structure of soil microorganisms. Based on the long-term fertilization positioning experiment station of brown earth, we analyzed the dynamics of soil ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) under different fertilization treatments, including no fertilization (CK), low level of inorganic N fertilizer (N2), high level of inorganic N fertilizer (N4), and organic manure combined with inorganic N fertilizer (M2N2), aiming to provide a basis for microbiological mechanism of soil N transformation and improvement of soil fertility. The results showed that the ratio of AOA to AOB abundance was 2.28-61.95 under different fertilization treatments. Compared with that in CK, the AOA abundance was reduced by 1.6%-13.6% after long-term fertilization. The abundance of AOB in N4 treatment decreased first and then increased with soil depths, but with contrary results in other treatments. The Shannon diversity index (H), evenness index (J), and Simpson index (S) of AOB were higher than those of AOA. The AOB diversity was increased at 0-20 cm soil layer in M2N2 treatment, while that of AOA was decreased. Soil AOB clustered with soil depths, and neither AOA nor AOB community clustered with fertilization treatments. In summary, long-term fertilization altered the composition of AOA and AOB. AOA was sensitive to environment, whereas AOB was more abundant and stable.


Assuntos
Amônia , Solo , Archaea , Bactérias , Nitrificação , Oxirredução , Filogenia , Microbiologia do Solo
4.
Ying Yong Sheng Tai Xue Bao ; 26(7): 1961-8, 2015 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-26710620

RESUMO

The characteristics and changes of soil organic carbon (SOC) and total nitrogen (TN) in different size particles of soil under different agricultural practices are the basis for better understanding soil carbon sequestration of mollisols. Based on a 31-year long-term field experiment located at the Heilongjiang Academy of Agricultural Sciences (Harbin) , soil samples under six treatments were separated by size-fractionation method to explore changes and distribution of SOC and TN in coarse sand, fine sand, silt and clay from the top layer (0-20 cm) and subsurface layer (20-40 cm). Results showed that long-term application of manure (M) increased the percentages of SOC and TN in coarse sand and clay size fractions. In the top layer, application of nitrogen, phosphorus and potassium fertilizers combined with manure (NPKM) increased the percentages of SOC and TN in coarse sand by 191.3% and 179.3% compared with the control (CK), whereas M application increased the percentages of SOC and TN in clay by 45% and 47% respectively. For subsurface layers, the increase rates of SOC and TN in corresponding parts were lower than that in top layer. In the surface and subsurface layers, the percentages of SOC storage in silt size fraction accounted for 42%-63% and 48%-54%, TN storage accounted for 34%-59% and 41%-47%, respectively. The enrichment factors of SOC and TN in coarse sand and clay fractions of surface layers increased significantly under the treatments with manure. The SOC and TN enrichment factors were highest in the NPKM, being 2.30 and 1.88, respectively, while that in the clay fraction changed little in the subsurface layer.


Assuntos
Agricultura , Carbono/química , Fertilizantes , Nitrogênio/química , Solo/química , Silicatos de Alumínio , Sequestro de Carbono , Argila , Esterco , Tamanho da Partícula , Fósforo , Potássio , Dióxido de Silício
5.
Ying Yong Sheng Tai Xue Bao ; 19(2): 369-73, 2008 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-18464645

RESUMO

In this paper, black soil samples were separated into four sizes ( > 2,000, 2,000-250, 250-53, and <53 microm) of aggregates by wet sieving, and their free light fraction (free LF) and intra-aggregate particulate organic matter (iPOM) were isolated by density fractionation, aimed to evaluate the effects of manure application on the organic carbon in different sizes of aggregates in black soil. The results showed that compared with the control, applying manure improved soil aggregation significantly, and compensated the disturbance of tillage and slowed down the turnover of aggregates to some degree. After applying manure, the content of fine iPOM-C was significantly higher than that of coarse iPOM-C, suggesting that manure application was beneficial to the accumulation of fine iPOM-C, which is the main form of carbon sequestration in the aggregates of black soil.


Assuntos
Carbono/análise , Esterco , Compostos Orgânicos/análise , Solo/análise , Animais , Monitoramento Ambiental/métodos , Fertilizantes , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...