Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(2): 103013, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38613779

RESUMO

DNA-binding proteins perform diverse functions, including regulating cellular growth and orchestrating chromatin architecture. Here, we present a protocol to discover proteins specifically interacting with a hexanucleotide repeat DNA, the expansion of which is known as the most frequent genetic cause of familial C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia. We describe steps to fish out DNA-binding proteins recognizing double-stranded repeat DNAs using a SILAC (stable isotope labelling by amino acids in cell culture)-based approach and validate the results using electrophoretic mobility shift assay. For complete details on the use and execution of this protocol, please refer to Liu et al.1.

2.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37745492

RESUMO

Proteotoxic stress impairs cellular homeostasis and underlies the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The proteasomal and autophagic degradation of proteins are two major pathways for protein quality control in the cell. Here, we report a genome-wide CRISPR screen uncovering a major regulator of cytotoxicity resulting from the inhibition of the proteasome. Dihydrolipoamide branched chain transacylase E2 (DBT) was found to be a robust suppressor, the loss of which protects against proteasome inhibition-associated cell death through promoting clearance of ubiquitinated proteins. Loss of DBT altered the metabolic and energetic status of the cell and resulted in activation of autophagy in an AMP-activated protein kinase (AMPK)-dependent mechanism in the presence of proteasomal inhibition. Loss of DBT protected against proteotoxicity induced by ALS-linked mutant TDP-43 in Drosophila and mammalian neurons. DBT is upregulated in the tissues from ALS patients. These results demonstrate that DBT is a master switch in the metabolic control of protein quality control with implications in neurodegenerative diseases.

3.
Sci Rep ; 13(1): 16425, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777524

RESUMO

Greater molecular divergence and genetic diversity are present in regions of high recombination in many species. Studies describing the correlation between variant abundance and recombination rate have long focused on recombination in the context of linked selection models, whereby interference between linked sites under positive or negative selection reduces genetic diversity in regions of low recombination. Here, we show that indels, especially those of intermediate sizes, are enriched relative to single nucleotide polymorphisms in regions of high recombination in C. elegans. To explain this phenomenon, we reintroduce an alternative model that emphasizes the mutagenic effect of recombination. To extend the analysis, we examine the variants with a phylogenetic context and discuss how different models could be examined together. The number of variants generated by recombination in natural populations could be substantial including possibly the majority of some indel subtypes. Our work highlights the potential importance of a mutagenic effect of recombination, which could have a significant role in the shaping of natural genetic diversity.


Assuntos
Caenorhabditis elegans , Recombinação Genética , Animais , Caenorhabditis elegans/genética , Filogenia , Seleção Genética , Polimorfismo de Nucleotídeo Único , Variação Genética
5.
Neuron ; 111(8): 1205-1221.e9, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36822200

RESUMO

The C9orf72 hexanucleotide repeat expansion (HRE) is the most frequent genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we describe the pathogenic cascades that are initiated by the C9orf72 HRE DNA. The HRE DNA binds to its protein partner DAXX and promotes its liquid-liquid phase separation, which is capable of reorganizing genomic structures. An HRE-dependent nuclear accumulation of DAXX drives chromatin remodeling and epigenetic changes such as histone hypermethylation and hypoacetylation in patient cells. While regulating global gene expression, DAXX plays a key role in the suppression of basal and stress-inducible expression of C9orf72 via chromatin remodeling and epigenetic modifications of the promoter of the major C9orf72 transcript. Downregulation of DAXX or rebalancing the epigenetic modifications mitigates the stress-induced sensitivity of C9orf72-patient-derived motor neurons. These studies reveal a C9orf72 HRE DNA-dependent regulatory mechanism for both local and genomic architectural changes in the relevant diseases.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , DNA/genética , DNA/metabolismo , Expansão das Repetições de DNA/genética , Epigênese Genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Histonas/metabolismo
6.
Methods Mol Biol ; 2551: 543-560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310224

RESUMO

Stress granules (SGs) are cytosolic ribonucleoprotein granules that form via a liquid-liquid phase separation in response to environmental stresses such as heat, oxidative, and osmotic changes. Due to the condensation of low complexity, hydrophobic regions in core SG components in these highly dynamic granules, defects in SG maintenance and formation have been linked to toxic aggregate formation in neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia. However, efforts to dissect mechanisms regulating SG formation and maintenance have been limited by methods of tracking protein-SG localization. Here we describe a method for detecting and quantifying recruitment of cytosolically enriched proteins to SGs by indirect immunofluorescence microscopy. Using this method, we tracked the transient recruitment of the cytosolically enriched ubiquitin-like protein, ubiquilin 2 (UBQLN2), and a number of other factors into SGs, demonstrating its utility (Alexander et al., Proc Natl Acad Sci U S A 115:E11485-E11494, 2018).


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Grânulos de Estresse , Demência Frontotemporal/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Ubiquitinas/metabolismo , Fatores de Transcrição/metabolismo , Estresse Fisiológico , Grânulos Citoplasmáticos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
7.
Nat Commun ; 13(1): 5584, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151083

RESUMO

Energy metabolism and membraneless organelles have been implicated in human diseases including neurodegeneration. How energy deficiency regulates ribonucleoprotein particles such as stress granules (SGs) is still unclear. Here we identified a unique type of granules induced by energy deficiency under physiological conditions and uncovered the mechanisms by which the dynamics of diverse stress-induced granules are regulated. Severe energy deficiency induced the rapid formation of energy deficiency-induced stress granules (eSGs) independently of eIF2α phosphorylation, whereas moderate energy deficiency delayed the clearance of conventional SGs. The formation of eSGs or the clearance of SGs was regulated by the mTOR-4EBP1-eIF4E pathway or eIF4A1, involving assembly of the eIF4F complex or RNA condensation, respectively. In neurons or brain organoids derived from patients carrying the C9orf72 repeat expansion associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the eSG formation was enhanced, and the clearance of conventional SGs was impaired. These results reveal a critical role for intracellular energy in the regulation of diverse granules and suggest that disruptions in energy-controlled granule dynamics may contribute to the pathogenesis of relevant diseases.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Grânulos Citoplasmáticos/metabolismo , Grânulos de Ribonucleoproteínas Citoplasmáticas , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Estresse Fisiológico/fisiologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
8.
Bioessays ; 44(11): e2200110, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36135988

RESUMO

Neurological diseases (NDs), featured by progressive dysfunctions of the nervous system, have become a growing burden for the aging populations. N-Deacetylase and N-sulfotransferase 3 (NDST3) is known to catalyze deacetylation and N-sulfation on disaccharide substrates. Recently, NDST3 is identified as a novel deacetylase for tubulin, and its newly recognized role in modulating microtubule acetylation and lysosomal acidification provides fresh insights into ND therapeutic approaches using NDST3 as a target. Microtubule acetylation and lysosomal acidification have been reported to be critical for activities in neurons, implying that the regulators of these two biological processes, such as the previously known microtubule deacetylases, histone deacetylase 6 (HDAC6) and sirtuin 2 (SIRT2), could play important roles in various NDs. Aberrant NDST3 expression or tubulin acetylation has been observed in an increasing number of NDs, including amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), schizophrenia and bipolar disorder, Alzheimer's disease (AD), and Parkinson's disease (PD), suggesting that NDST3 is a key player in the pathogenesis of NDs and may serve as a target for development of new treatment of NDs.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Dissacarídeos/metabolismo , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Microtúbulos/metabolismo , Sirtuína 2/metabolismo , Sulfotransferases/metabolismo , Tubulina (Proteína)/metabolismo
9.
EMBO J ; 40(19): e107204, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34435379

RESUMO

Lysosomes are key organelles maintaining cellular homeostasis in health and disease. Here, we report the identification of N-deacetylase and N-sulfotransferase 3 (NDST3) as a potent regulator of lysosomal functions through an unbiased genetic screen. NDST3 constitutes a new member of the histone deacetylase (HDAC) family and catalyzes the deacetylation of α-tubulin. Loss of NDST3 promotes assembly of the V-ATPase holoenzyme on the lysosomal membrane and thereby increases the acidification of the organelle. NDST3 is downregulated in tissues and cells from patients carrying the C9orf72 hexanucleotide repeat expansion linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Deficiency in C9orf72 decreases the level of NDST3, and downregulation of NDST3 exacerbates the proteotoxicity of poly-dipeptides generated from the C9orf72 hexanucleotide repeats. These results demonstrate a previously unknown regulatory mechanism through which microtubule acetylation regulates lysosomal activities and suggest that NDST3 could be targeted to modulate microtubule and lysosomal functions in relevant diseases.


Assuntos
Lisossomos/metabolismo , Sulfotransferases/metabolismo , Tubulina (Proteína)/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Acetilação , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Imunofluorescência , Expressão Gênica , Técnicas de Silenciamento de Genes , Biblioteca Gênica , Genes Reporter , Humanos , Concentração de Íons de Hidrogênio , Macrolídeos/farmacologia , Macrolídeos/toxicidade , Camundongos , Microtúbulos/metabolismo , Modelos Biológicos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Testes Farmacogenômicos/métodos , Variantes Farmacogenômicos , Ligação Proteica , Sulfotransferases/genética , ATPases Vacuolares Próton-Translocadoras/genética
10.
Sci Rep ; 11(1): 11017, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040027

RESUMO

Genetic mapping is used in forward genetics to narrow the list of candidate mutations and genes corresponding to the mutant phenotype of interest. Even with modern advances in biology such as efficient identification of candidate mutations by whole-genome sequencing, mapping remains critical in pinpointing the responsible mutation. Here we describe a simple, fast, and affordable mapping toolkit that is particularly suitable for mapping in Caenorhabditis elegans. This mapping method uses insertion-deletion polymorphisms or indels that could be easily detected instead of single nucleotide polymorphisms in commonly used Hawaiian CB4856 mapping strain. The materials and methods were optimized so that mapping could be performed using tiny amount of genetic material without growing many large populations of mutants for DNA purification. We performed mapping of previously known and unknown mutations to show strengths and weaknesses of this method and to present examples of completed mapping. For situations where Hawaiian CB4856 is unsuitable, we provide an annotated list of indels as a basis for fast and easy mapping using other wild isolates. Finally, we provide rationale for using this mapping method over other alternatives as a part of a comprehensive strategy also involving whole-genome sequencing and other methods.


Assuntos
Caenorhabditis elegans , Mapeamento Cromossômico , Mutação INDEL , Animais , Fenótipo
11.
J Am Chem Soc ; 143(19): 7368-7379, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33855846

RESUMO

The expansion of a hexanucleotide repeat GGGGCC (G4C2) in the C9orf72 gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The G4C2 expansion leads to repeat-associated non-AUG (RAN) translation and the production of toxic dipeptide repeat (DPR) proteins, but the mechanisms of RAN translation remain enigmatic. Here, we report that the RNA helicase DHX36 is a robust positive regulator of C9orf72 RAN translation. DHX36 has a high affinity for the G4C2 repeat RNA, preferentially binds to the repeat RNA's G-quadruplex conformation, and efficiently unwinds the G4C2 G-quadruplex structures. Native DHX36 interacts with the G4C2 repeat RNA and is essential for effective RAN translation in the cell. In induced pluripotent stem cells and differentiated motor neurons derived from C9orf72-linked ALS patients, reducing DHX36 significantly decreased the levels of endogenous DPR proteins. DHX36 is also aberrantly upregulated in tissues of C9orf72-linked ALS patients. These results indicate that DHX36 facilitates C9orf72 RAN translation by resolving repeat RNA G-quadruplex structures and may be a potential target for therapeutic intervention.


Assuntos
Esclerose Lateral Amiotrófica/genética , DNA Helicases/genética , RNA/genética , Expansão das Repetições de DNA/genética , Quadruplex G , Humanos
12.
Nucleic Acids Res ; 49(9): 4816-4830, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33784396

RESUMO

G-quadruplexes (G4s), higher-order DNA and RNA secondary structures featuring guanine-rich nucleic acid sequences with various conformations, are widely distributed in the human genome. These structural motifs are known to participate in basic cellular processes, including transcription, splicing, and translation, and their functions related to health and disease are becoming increasingly recognized. In this review, we summarize the landscape of G4s involved in major neurodegenerative disorders, describing the genes that contain G4-forming sequences and proteins that have high affinity for G4-containing elements. The functions of G4s are diverse, with potentially protective or deleterious effects in the pathogenic cascades of various neurological diseases. While the studies of the functions of G4s in vivo, including those involved in pathophysiology, are still in their early stages, we will nevertheless discuss the evidence pointing to their biological relevance. A better understanding of this unique structural element in the biological context is important for unveiling its potential roles in the pathogenesis of diseases such as neurodegeneration and for designing new diagnostic and therapeutic strategies.


Assuntos
Quadruplex G , Doenças Neurodegenerativas/genética , Transporte Ativo do Núcleo Celular , Processamento Alternativo , DNA/química , Metilação de DNA , Síndrome do Cromossomo X Frágil/genética , Regulação da Expressão Gênica , Humanos , Epilepsias Mioclônicas Progressivas/genética , Doenças Priônicas/genética , Biossíntese de Proteínas , RNA/química , Transcrição Gênica
13.
PLoS Biol ; 19(3): e3001096, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33705388

RESUMO

The regulation of protein synthesis is essential for maintaining cellular homeostasis, especially during stress responses, and its dysregulation could underlie the development of human diseases. The critical step during translation regulation is the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α). Here we report the identification of a direct kinase of eIF2α, microtubule affinity-regulating kinase 2 (MARK2), which phosphorylates eIF2α in response to proteotoxic stress. The activity of MARK2 was confirmed in the cells lacking the 4 previously known eIF2α kinases. MARK2 itself was found to be a substrate of protein kinase C delta (PKCδ), which serves as a sensor for protein misfolding stress through a dynamic interaction with heat shock protein 90 (HSP90). Both MARK2 and PKCδ are activated via phosphorylation in proteotoxicity-associated neurodegenerative mouse models and in human patients with amyotrophic lateral sclerosis (ALS). These results reveal a PKCδ-MARK2-eIF2α cascade that may play a critical role in cellular proteotoxic stress responses and human diseases.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/fisiologia , Proteínas de Choque Térmico HSP90/metabolismo , Homeostase , Humanos , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Fosforilação , Biossíntese de Proteínas , Estresse Fisiológico/fisiologia , eIF-2 Quinase/metabolismo
14.
Cell Metab ; 33(3): 531-546.e9, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33545050

RESUMO

The haploinsufficiency of C9orf72 is implicated in the most common forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the full spectrum of C9orf72 functions remains to be established. Here, we report that C9orf72 is a mitochondrial inner-membrane-associated protein regulating cellular energy homeostasis via its critical role in the control of oxidative phosphorylation (OXPHOS). The translocation of C9orf72 from the cytosol to the inter-membrane space is mediated by the redox-sensitive AIFM1/CHCHD4 pathway. In mitochondria, C9orf72 specifically stabilizes translocase of inner mitochondrial membrane domain containing 1 (TIMMDC1), a crucial factor for the assembly of OXPHOS complex I. C9orf72 directly recruits the prohibitin complex to inhibit the m-AAA protease-dependent degradation of TIMMDC1. The mitochondrial complex I function is impaired in C9orf72-linked ALS/FTD patient-derived neurons. These results reveal a previously unknown function of C9orf72 in mitochondria and suggest that defective energy metabolism may underlie the pathogenesis of relevant diseases.


Assuntos
Proteína C9orf72/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético/fisiologia , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Fator de Indução de Apoptose/antagonistas & inibidores , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Proteína C9orf72/antagonistas & inibidores , Proteína C9orf72/genética , Linhagem Celular , Sobrevivência Celular , Complexo I de Transporte de Elétrons/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/antagonistas & inibidores , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Fosforilação Oxidativa , Interferência de RNA , RNA Interferente Pequeno/metabolismo
15.
Front Genet ; 11: 566948, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133151

RESUMO

Thermotolerance of an organism is a complex trait that is influenced by a multitude of genetic and environmental factors. Many factors controlling thermotolerance in Caenorhabditis elegans are known to extend life. To understand the regulation of thermotolerance, we performed a genetic screen for mutants with better survival at warm temperature. Here we identified by dauer survival a tax-2 mutation and several mutations disrupting an insulin signaling pathway including the daf-2 gene. While the tax-2 mutant has improved thermotolerance and long life span, the newly identified daf-2 and other insulin signaling mutants, unlike the canonical daf-2(e1370), do not show improved thermotolerance despite being long-lived. Examination of tax-2 mutations and their mutant phenotypes suggest that the control of thermotolerance is not coupled with the control of life span or dauer survival. With genetic interaction studies, we concluded that tax-2 has complex roles in life span and dauer survival and that tax-2 is a negative regulator of thermotolerance independent of other known thermotolerance genes including those in the insulin signaling pathway. Moreover, cold growth temperature during development weakens the improved thermotolerance associated with tax-2 and other thermotolerance-inducing mutations. Together, this study reveals previously unknown genetic and environmental factors controlling thermotolerance and their complex relationship with life span regulation.

16.
Proc Natl Acad Sci U S A ; 117(45): 28114-28125, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106424

RESUMO

An imbalance in cellular homeostasis occurring as a result of protein misfolding and aggregation contributes to the pathogeneses of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here, we report the identification of a ubiquitin-specific protease, USP7, as a regulatory switch in a protein quality-control system that defends against proteotoxicity. A genome-wide screen in a Caenorhabditis elegans model of SOD1-linked ALS identified the USP7 ortholog as a suppressor of proteotoxicity in the nervous system. The actions of USP7 orthologs on misfolded proteins were found to be conserved in Drosophila and mammalian cells. USP7 acts on protein quality control through the SMAD2 transcription modulator of the transforming growth factor ß pathway, which activates autophagy and enhances the clearance of misfolded proteins. USP7 deubiquitinates the E3 ubiquitin ligase NEDD4L, which mediates the degradation of SMAD2. Inhibition of USP7 protected against proteotoxicity in mammalian neurons, and SMAD2 was found to be dysregulated in the nervous systems of ALS patients. These findings reveal a regulatory pathway of protein quality control that is implicated in the proteotoxicity-associated neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Ubiquitina-Proteína Ligases Nedd4 , Proteína Smad2 , Peptidase 7 Específica de Ubiquitina , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Drosophila , Células-Tronco Embrionárias , Endopeptidases/genética , Endopeptidases/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Neurônios/metabolismo , Dobramento de Proteína , Proteína Smad2/genética , Proteína Smad2/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo
17.
Nucleic Acids Res ; 48(13): 7421-7438, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32496517

RESUMO

The long non-coding RNA NEAT1 serves as a scaffold for the assembly of paraspeckles, membraneless nuclear organelles involved in gene regulation. Paraspeckle assembly requires NEAT1 recruitment of the RNA-binding protein NONO, however the NEAT1 elements responsible for recruitment are unknown. Herein we present evidence that previously unrecognized structural features of NEAT1 serve an important role in these interactions. Led by the initial observation that NONO preferentially binds the G-quadruplex conformation of G-rich C9orf72 repeat RNA, we find that G-quadruplex motifs are abundant and conserved features of NEAT1. Furthermore, we determine that NONO binds NEAT1 G-quadruplexes with structural specificity and provide evidence that G-quadruplex motifs mediate NONO-NEAT1 association, with NONO binding sites on NEAT1 corresponding largely to G-quadruplex motifs, and treatment with a G-quadruplex-disrupting small molecule causing dissociation of native NONO-NEAT1 complexes. Together, these findings position G-quadruplexes as a primary candidate for the NONO-recruiting elements of NEAT1 and provide a framework for further investigation into the role of G-quadruplexes in paraspeckle formation and function.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Quadruplex G , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Sítios de Ligação , Sequência Conservada , Proteínas de Ligação a DNA/química , Células HEK293 , Humanos , Camundongos , Ligação Proteica , RNA Longo não Codificante/química , Proteínas de Ligação a RNA/química
18.
Discov Med ; 29(156): 65-77, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32598864

RESUMO

Staphylococcus aureus can cause both acute and recurrent persistent infections such as peritonitis, endocarditis, abscesses, osteomyelitis, and chronic wound infections. Effective therapies to treat persistent disease are paramount. However, the mechanisms of S. aureus persistence are poorly understood. In this study, we performed a comprehensive and unbiased high-throughput mutant screen against a transposon-insertion mutant library of S. aureus USA300 and focused on the role of argJ encoding an acetyltransferase in the arginine biosynthesis pathway, whose transposon insertion caused a significant defect in persister formation using multiple drugs and stresses. Genetic complementation and arginine supplementation restored persistence in the argJ transposon insertion mutant while generation of mutations on the active site of the ArgJ protein caused a defect in persistence. Quantitative RT-PCR analysis showed that the genes encoded in the arg operon were over-expressed under drug stressed conditions and in stationary phase cultures. In addition, the argJ mutant had attenuated virulence in both mouse and C. elegans. Our studies identify a new mechanism of persistence mediated by arginine metabolism in S. aureus. These findings provide not only novel insights about the mechanisms of S. aureus persistence but also offer novel therapeutic targets that may help to develop more effective treatment of persistent S. aureus infections.


Assuntos
Acetiltransferases/genética , Proteínas de Bactérias/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Infecções Estafilocócicas/microbiologia , Fatores de Virulência/genética , Acetiltransferases/metabolismo , Animais , Antibacterianos/farmacologia , Arginina/biossíntese , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Caenorhabditis elegans , Elementos de DNA Transponíveis/genética , Modelos Animais de Doenças , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Feminino , Biblioteca Gênica , Genes Bacterianos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Staphylococcus aureus Resistente à Meticilina/genética , Camundongos , Mutação/efeitos dos fármacos , Virulência/efeitos dos fármacos , Virulência/genética , Fatores de Virulência/metabolismo
19.
PLoS Genet ; 16(4): e1008738, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32282804

RESUMO

Nutrient utilization and energy metabolism are critical for the maintenance of cellular homeostasis. A mutation in the C9orf72 gene has been linked to the most common forms of neurodegenerative diseases that include amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we have identified an evolutionarily conserved function of C9orf72 in the regulation of the transcription factor EB (TFEB), a master regulator of autophagic and lysosomal genes that is negatively modulated by mTORC1. Loss of the C. elegans orthologue of C9orf72, ALFA-1, causes the nuclear translocation of HLH-30/TFEB, leading to activation of lipolysis and premature lethality during starvation-induced developmental arrest in C. elegans. A similar conserved pathway exists in human cells, in which C9orf72 regulates mTOR and TFEB signaling. C9orf72 interacts with and dynamically regulates the level of Rag GTPases, which are responsible for the recruitment of mTOR and TFEB on the lysosome upon amino acid signals. These results have revealed previously unknown functions of C9orf72 in nutrient sensing and metabolic pathways and suggest that dysregulation of C9orf72 functions could compromise cellular fitness under conditions of nutrient stress.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína C9orf72/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Lipólise , Transporte Ativo do Núcleo Celular , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína C9orf72/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo
20.
Front Microbiol ; 10: 2199, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632363

RESUMO

Staphylococcus aureus is an opportunistic pathogen that causes acute and chronic infections. Due to S. aureus's highly resistant and persistent nature, it is paramount to identify better drug targets in order to eradicate S. aureus infections. Despite the efforts in understanding bacterial cell death, the genes, and pathways of S. aureus cell death remain elusive. Here, we performed a genome-wide screen using a transposon mutant library to study the genetic mechanisms involved in S. aureus cell death. Using a precisely controlled heat-ramp and acetic acid exposure assays, mutations in 27 core genes (hsdR1, hslO, nsaS, sspA, folD, mfd, vraF, kdpB, USA300HOU_2684, 0868, 0369, 0420, 1154, 0142, 0930, 2590, 0997, 2559, 0044, 2004, 1209, 0152, 2455, 0154, 2386, 0232, 0350 involved in transporters, transcription, metabolism, peptidases, kinases, transferases, SOS response, nucleic acid, and protein synthesis) caused the bacteria to be more death-resistant. In addition, we identified mutations in 10 core genes (capA, gltT, mnhG1, USA300HOU_1780, 2496, 0200, 2029, 0336, 0329, 2386, involved in transporters, metabolism, transcription, and cell wall synthesis) from heat-ramp and acetic acid that caused the bacteria to be more death-sensitive or with defect in persistence. Interestingly, death-resistant mutants were more virulent than the parental strain USA300 and caused increased mortality in a Caenorhabditis elegans infection model. Conversely, death-sensitive mutants were less persistent and formed fewer persister cells upon exposure to different classes of antibiotics. These findings provide new insights into the mechanisms of S. aureus cell death and offer new therapeutic targets for developing more effective treatments for infections caused by S. aureus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...