Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
ACS Nano ; 18(20): 13384-13396, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38736184

RESUMO

Silicon (Si) stands out as a promising high-capacity anode material for high-energy Li-ion batteries. However, a drastic volume change of Si during cycling leads to the electrode structure collapse and interfacial stability degradation. Herein, a multifunctional quasisolid gel polymer electrolyte (QSGPE) is designed, which is synthesized through the in situ polymerization of methylene bis(acrylamide) with silica-nanoresin composed of nanosilica and a trifunctional cross-linker in cells, leading to the creation of a "breathing" three-dimensional elastic Li-ion conducting framework that seamlessly integrates an electrode, a binder, and an electrolyte. The silicon particles within the anode are encapsulated by buffering the QSGPE after cross-linking polymerization, which synergistically interacts with the existing PAA binder to reinforce the electrode structure and stabilize the interface. In addition, the formation of the LiF- and Li3N-rich SEI layer further improves the interfacial property. The QSGPE demonstrates a wide electrochemical window until 5.5 V, good flame retardancy, high ionic conductivity (1.13 × 10-3 S cm-1), and a Li+ transference number of 0.649. The advanced QSGPE and cell design endow both nano- and submicrosized silicon (smSi) anodes with high initial Coulombic efficiencies over 88.0% and impressive cycling stability up to 600 cycles at 1 A g-1. Furthermore, the NCM811//Si cell achieves capacity retention of ca. 82% after 100 cycles at 0.5 A g-1. This work provides an effective strategy for extending the cycling life of the Si anode and constructing an integrated cell structure by in situ polymerization of the quasisolid gel polymer electrolyte.

2.
Talanta ; 273: 125868, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458085

RESUMO

Magnetic nanoparticle (MNP)-based immunochromatographic tests (ICTs) display long-term stability and an enhanced capability for multiplex biomarker detection, surpassing conventional gold nanoparticles (AuNPs) and fluorescence-based ICTs. In this study, we innovatively developed zwitterionic silica-coated MNPs (MNP@Si-Zwit/COOH) with outstanding antifouling capabilities and effectively utilised them for the simultaneous identification of the nucleocapsid protein (N protein) of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) and influenza A/B. The carboxyl-functionalised MNPs with 10% zwitterionic ligands (MNP@Si-Zwit 10/COOH) exhibited a wide linear dynamic detection range and the most pronounced signal-to-noise ratio when used as probes in the ICT. The relative limit of detection (LOD) values were achieved in 12 min by using a magnetic assay reader (MAR), with values of 0.0062 ng/mL for SARS-CoV-2 and 0.0051 and 0.0147 ng/mL, respectively, for the N protein of influenza A and influenza B. By integrating computer vision and deep learning to enhance the image processing of immunoassay results for multiplex detection, a classification accuracy in the range of 0.9672-0.9936 was achieved for evaluating the three proteins at concentrations of 0, 0.1, 1, and 10 ng/mL. The proposed MNP-based ICT for the multiplex diagnosis of biomarkers holds substantial promise for applications in both medical institutions and self-administered diagnostic settings.


Assuntos
Aprendizado Profundo , Influenza Humana , Nanopartículas Metálicas , Humanos , Ouro/química , Nanopartículas Metálicas/química , Influenza Humana/diagnóstico , Imunoensaio/métodos , Biomarcadores , Fenômenos Magnéticos
3.
Angew Chem Int Ed Engl ; 63(23): e202317923, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38536212

RESUMO

Lithium metal battery has been regarded as promising next-generation battery system aiming for higher energy density. However, the lithium metal anode suffers severe side-reaction and dendrite issues. Its electrochemical performance is significantly dependant on the electrolyte components and solvation structure. Herein, a series of fluorinated ethers are synthesized with weak-solvation ability owing to the duple steric effect derived from the designed longer carbon chain and methine group. The electrolyte solvation structure rich in AGGs (97.96 %) enables remarkable CE of 99.71 % (25 °C) as well as high CE of 98.56 % even at -20 °C. Moreover, the lithium-sulfur battery exhibits excellent performance in a wide temperature range (-20 to 50 °C) ascribed to the modified interphase rich in LiF/LiO2. Furthermore, the pouch cell delivers superior energy density of 344.4 Wh kg-1 and maintains 80 % capacity retention after 50 cycles. The novel solvent design via molecule chemistry provides alternative strategy to adjust solvation structure and thus favors high-energy density lithium metal batteries.

4.
J Colloid Interface Sci ; 661: 175-184, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38295699

RESUMO

High overpotential and low stability are major challenges for hydrogen evolution reaction (HER)/oxygen evolution reaction (OER). Tuning the electronic structure of catalysts is regarded as a core strategy to enhance catalytic activity. Herein, we report CuOx/Cu nanorod skeleton supported Ru doped cobalt oxide/nitrogen-doped carbon nanocomposites (Ru-CoO/NC/CuOx/Cu, denoted as RCUF) as bifunctional catalysis. The one-dimensional/three-dimensional (1D/3D) nanostructure and defect-rich amorphous/crystalline phases of RCUF facilitates active site exposure and electron transport. Experimental characterization and density functional theory (DFT) calculation results indicate that Ru doping can optimize the electronic structure, which accelerates the water dissociation process and reduces the Gibbs free energy of the reaction intermediates. As expected, the optimal RCUF-900 exhibits low overpotential (25/205 mV at 10 mA cm-2) and high stability (100/100 h) for HER/OER. RCUF-900 has low voltage (1.54 V at 10 mA cm-2) and high stability (100 h) for overall water splitting. This work provides new insights into the design of advanced catalysts for overall water splitting.

5.
J Colloid Interface Sci ; 658: 43-51, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096678

RESUMO

The rational construction of amorphous-crystalline heterointerface can effectively improve the activity and stability of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, RuO2/Co3O4 (RCO) amorphous-crystalline heterointerface is prepared via oxidation method. The optimal RCO-10 exhibits low overpotentials of 57 and 231 mV for HER and OER at 10 mA cm-2, respectively. Experimental characterization and density functional theory (DFT) results show that the optimized electronic structure and surface reconstruction endow RCO-10 with excellent catalytic activity. DFT results show that electrons transfer from RuO2 to Co3O4 through the amorphous-crystalline heterointerface, achieving electron redistribution and moving the d-band center upward, which optimizes the adsorption free energy of the hydrogen reaction intermediate. Moreover, the reconstructed Ru/Co(OH)2 during the HER process has low hydrogen adsorption free energy to enhance HER activity. The reconstructed RuO2/CoOOH during the OER process has a low energy barrier for the elementary reaction (O*→*OOH) to enhance OER activity. Furthermore, RCO-10 requires only 1.50 V to drive 10 mA cm-2 and maintains stability over 200 h for overall water splitting. Meanwhile, RCO-10 displays stability for 48 h in alkaline solutions containing 0.5 M NaCl. The amorphous-crystalline heterointerface may bring new breakthroughs in the design of efficient and stable catalysts.

6.
Small ; 19(52): e2303855, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37643376

RESUMO

Designing efficient catalysts to promote the electrochemical oxidation of anodes is the core of the development of electrochemical synthesis technologies, such as HER and CO2 RR. Here, a novel vacuum induction strategy is used to synthesize nickel boride/nickel (Ni3 B/Ni) heterostructure catalyst for electrochemical oxidation of methanol into formic acid. The catalyst has extremely high reactivity (only 146.9 mV overpotential at 10 mA cm-2 , the maximum current density reaches 555.70 mA mg-1 and 443.87 mA cm-2 ), ultra-high selectivity (Faraday efficiency of methanol conversion to formic acid is close to 100%), and ultra-long life (over 50 h at 100 mA cm-2 ). In-suit electrochemical impedance spectroscopy proved that MeOH is oxidized first and inhibits the phase transition of the electrocatalyst to the high-valent electrooxidation products, which not only enables the high selectivity of MeOH oxidation but also ensures high stability of the catalyst. The mechanism studies by density functional theory calculations show that the potential determining step, the formation of *CH2 O, occurs most favorably in the Ni3 B/Ni heterostructure. These results provide references for the development of MeOH oxidation catalysts with high activity, high stability, high selectivity, and low cost.

7.
Angew Chem Int Ed Engl ; 62(27): e202302174, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010981

RESUMO

Rechargeable Zinc batteries (RZBs) are considered a potent competitor for next-generation electrochemical devices, due to their multiple advantages. Nevertheless, traditional aqueous electrolytes may cause serious hazards to long-term battery cycling through fast capacity fading and poor Coulombic efficiency (CE), which happens due to complex reaction kinetics in aqueous systems. Herein, we proposed the novel adoption of the protic amide solvent, N-methyl formamide (NMF) as a Zinc battery electrolyte, which possesses a high dielectric constant and high flash point to promote fast kinetics and battery safety simultaneously. Dendrite-free and granular Zn deposition in Zn-NMF electrolyte assures ultra-long lifespan of 2000 h at 2.0 mA cm-2 /2.0 mAh cm-2 , high CE of 99.57 %, wide electrochemical window (≈3.43 V vs. Zn2+ /Zn), and outstanding durability up to 10.0 mAh cm-2 . This work sheds light on the efficient performance of the protic non-aqueous electrolyte, which will open new opportunities to promote safe and energy-dense RZBs.

8.
Small ; 19(34): e2301564, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093190

RESUMO

Serious capacity and voltage degradation of Li-rich layered oxides (LLOs) caused by severe interfacial side reactions (ISR), structural instability, and transition metal (TM) dissolution during charge/discharge need to be urgently resolved. Here, it is proposed for the inaugural time that the confinement effect of PO4 3- dilutes the LiMn6 superstructure units on the surface of LLOs, while deriving a stable interface with phosphate compounds and spinel species. Combining theoretical calculations, diffraction, spectroscopy, and micrography, an in-depth investigation of the mechanism is performed. The results show that the modified LLO exhibits excellent anionic/cationic redox reversibility and ultra-high cycling stability. The capacity retention is increased from 72.4% to 95.4%, and the voltage decay is suppressed from 2.48 to 1.29 mV cycle-1 after 300 cycles at 1 C. It also has stable long cycling performance, with capacity retention improved from 40.2% to 81.9% after 500 cycles at 2 C. The excellent electrochemical performance is attributed to the diluted superstructure units on the surface of LLO inhibiting the TM migration in the intralayer and interlayer. Moreover, the stable interfacial layers alleviate the occurrence of ISR and TM dissolution. Therefore, this strategy can give some important insights into the development of highly stable LLOs.

9.
Mater Horiz ; 10(5): 1719-1725, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36857668

RESUMO

Rechargeable magnesium-ion batteries (MIBs) have received much attention in recent years, but their development remains limited due to a lack of anode materials with high capacity and fast diffusion kinetics. Herein, for the first time, hierarchical BiOX (X = Cl, Br, I) flowerlike microspheres composed of interleaved nanosheets are constructed via a simple room-temperature solid-state chemical reaction as the anode for MIBs. Among them, BiOCl flowerlike microspheres deliver good cycling stability (110 mA h g-1 after 100 cycles) and a superior rate capacity (134 mA h g-1 at 500 mA g-1). This is attributed to their unique flowerlike microsphere structure that not only accommodates a volume change to maintain their structural integrity but also shortens the ion-transport path to improve the diffusion rate. Importantly, ex situ tests were carried out to clarify the phase and structure evolution of the BiOCl flowerlike microspheres during cycling. The results show that BiOCl is first transformed to Bi and then alloyed to Mg3Bi2 in the discharging process, and Mg3Bi2 is turned back to Bi in the charging process. Besides, the initial microsphere structure is essentially maintained during the discharging/charging process, indicating the better stability of the structure. The current study demonstrates that the structural design of flowerlike microspheres is an effective strategy to develop promising anode materials for MIBs.

10.
Small ; 19(21): e2300148, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840668

RESUMO

The low specific capacity and low voltage plateau are significant challenges in the advancement of practical magnesium ion batteries (MIBs). Here, a superior aqueous electrolyte combining with a copper foam interlayer between anode and separator is proposed to address these drawbacks. Notably, with the dynamic redox of copper ions, the weakened solvation of Mg2+ cations in the electrolyte and the enhanced electronic conductivity of anode, which may offer effective capacity-compensation to the 3,4,9,10-perylenetetracarboxylic diimide (PTCDI)-Mg conversion reactions during the long-term cycles. As a result, the unique MIBs using expanded graphite cathode coupled with PTCDI anode demonstrate exceptional performance with an ultra-high capacity (205 mAh g-1 , 243 Wh kg-1 at 5 A g-1 ) as well as excellent cycling stability after 600 cycles and rate capability (138 mAh g-1 , 81 Wh kg-1 at 10 A g-1 ).

11.
Angew Chem Int Ed Engl ; 62(2): e202215110, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36370036

RESUMO

Metallic Zn is one of the most promising anodes, but its practical application has been hindered by dendritic growth and serious interfacial reactions in conventional electrolytes. Herein, ionic liquids are adopted to prepare intrinsically safe electrolytes via combining with TEP or TMP solvents. With this synergy effect, the blends of TEP/TMP with an IL fraction of ≈25 wt% are found to be promising electrolytes, with ionic conductivities comparable to those of standard phosphate-based electrolytes while electrochemical stabilities are considerably improved; over 1000 h at 2.0 mA cm-2 and ≈350 h at 5.0 mA cm-2 with a large areal capacity of 10 mAh cm-2 . The use of functionalized IL turns out to be a key factor in enhancing the Zn2+ transport due to the interaction of Zn2+ ions with IL-zincophilic sites resulting in reduced interfacial resistance between the electrodes and electrolyte upon cycling leading to spongy-like highly porous, homogeneous, and dendrite-free zinc as an anode material.

12.
ACS Nano ; 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36583574

RESUMO

Magnesium-sulfur (Mg-S) batteries are emerging as a promising alternative to lithium-ion batteries, due to their high energy density and low cost. Unfortunately, current Mg-S batteries typically suffer from the shuttle effect that originates from the dissolution of magnesium polysulfide intermediates, leading to several issues such as rapid capacity fading, large overcharge, severe self-discharge, and potential safety concern. To address these issues, here we harness a copper phosphide (Cu3P) modified separator to realize the adsorption of magnesium polysulfides and catalyzation of the conversion reaction of S and Mg2+ toward stable cycling of Mg-S cells. The bifunctional layer with Cu3P confined in a carbon matrix is coated on a commercial polypropylene membrane to form a porous membrane with high electrolyte wettability and good thermal stability. Density functional theory (DFT) calculations, polysulfide permeability tests, and post-mortem analysis reveal that the catalytic layer can adsorb polysulfides, effectively restraining the shuttle effect and facilitating the reversibility of the Mg-S cells. As a result, the Mg-S cells can achieve a high specific capacity, fast rates (449 mAh g-1 at 0.1 C and 249 mAh g-1 at 1.0 C), and a long cycle life (up to 500 cycles at 0.5 C) and operate even at elevated temperatures.

13.
Sci Bull (Beijing) ; 67(3): 256-262, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546074

RESUMO

The practical application of high-energy lithium-sulfur battery is plagued with two deadly obstacles. One is the "shuttle effect" originated from the sulfur cathode, and the other is the low Coulombic efficiency and security issues arising from the lithium metal anode. In addressing these issues, we propose a novel silicon-sulfurized poly(acrylonitrile) full battery. In this lithium metal-free system, the Li source is pre-loaded in the cathode, using a nitrogen evolution reaction (NER) to implant Li+ into the silicon/carbon anode. Sulfurized poly(acrylonitrile) based on a solid-solid conversion mechanism can fundamentally circumvent the "shuttle effect". Meanwhile, the silicon/carbon anode can achieve more efficient utilization and higher security when compared with the Li metal anode. The full cell used in this technology can deliver a capacity of 1169.3 mAh g-1, and it can be stabilized over 100 cycles, implying its excellent electrochemical stability. Furthermore, the practical pouch cell with a high sulfur loading of 4.2 mg cm-2 can achieve a high specific energy of 513.2 Wh kg-1. The mechanism of the NER in cathode has also been investigated and analyzed by in situ methods. Notably, this battery design completely conforms to the current battery production technology because of the degassing of gasbag, resulting in a low manufacturing cost. This work will open the avenue to develop a lithium metal-free battery using the NER.

14.
Chem Commun (Camb) ; 58(85): 11969-11972, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36205536

RESUMO

We present AIMD simulations for the stability of boron-center salts, Mg[B(Ohfip)4]2 and Mg[B(Otfe)4]2, compared to Mg(TFSI)2, and provide a visible reaction process at the atomic level. -CF3 groups have a positive effect on the electrochemical performance, and C atoms do not easily fall off from the anion groups to form a SEI in Mg[B(Ohfip)4]2, which will help to find high-performance magnesium electrolytes.

15.
ACS Appl Mater Interfaces ; 14(33): 37747-37758, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35972126

RESUMO

Transition metal oxides (TMOs) hold great potential for lithium-ion batteries (LIBs) on account of the high theoretical capacity. Unfortunately, the unfavorable volume expansion and low intrinsic electronic conductivity of TMOs lead to irreversible structural degradation, disordered particle agglomeration, and sluggish electrochemical reaction kinetics, which result in perishing rate capability and long-term stability. This work reports an Fe2O3/MoO3@NG heterostructure composite for LIBs through the uniform growth of Fe2O3/MoO3 heterostructure quantum dots (HQDs) on the N-doped rGO (NG). Due to the synergistic effects of the "couple tree"-type heterostructures constructed by Fe2O3 and MoO3 with NG, Fe2O3/MoO3@NG delivers a prominent rate performance (322 mA h g-1 at 20 A g-1, 5.0 times higher than that of Fe2O3@NG) and long-term cycle stability (433.5 mA h g-1 after 1700 cycles at 10 A g-1). Theoretical calculations elucidate that the strong covalent Fe-O-Mo, Mo-N, and Fe-N bonds weaken the diffusion energy barrier and promote the Li+-ion reaction to Fe2O3/MoO3@NG, thereby facilitating the structural stability, pseudocapacitance contribution, and electrochemical reaction kinetics. This work may provide a feasible strategy to promote the practical application of TMO-based LIBs.

16.
Chem Asian J ; 17(12): e202200205, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35416424

RESUMO

As a high-capacity anode material for lithium ion batteries, γ-Fe2 O3 is a promising alternative to conventional graphite among multifarious transition metal oxides owing to its high theoretical specific capacity (1007 mAh g-1 ), abundant reserves, good safety and low cost. However, improving the electrical conductivity and overcoming the morphological damage caused by the severe volume expansion during cycling are still the tricky problems to be solved. Herein, a three-dimensional heterostructure composite (γ-Fe2 O3 /PC-rGO60 ) was prepared by a facile solvothermal reaction followed by heat treatment in inert atmosphere. This composite material exhibits a reversible charge specific capacity of 1035 mAh g-1 at the current density of 0.1 A g-1 . After 100 cycles at 0.2 A g-1 , the capacity is increased from 966.2 to 1091.1 mAh g-1 . Even cycled for 200 cycles at 1 A g-1 , the capacity is only decreased from 751.4 to 670.6 mAh g-1 , giving capacity retention of 89.3%. The rGO network supported flexible composite architecture is beneficial for accommodating the volume expansion of the γ-Fe2 O3 active material during the lithiation/delithiation process. Besides, the conductive rGO network and the in-situ formed pyrolytic carbon (PC) can provide a smooth electron transmission path and a favorable lithium ion transport channel.

17.
Small Methods ; 5(9): e2100437, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34928066

RESUMO

Metal selenides have attracted increasing attention recently as anodes for sodium-ion batteries (SIBs) because of their large capacities, high electric conductivity, as well as environmental benignity. However, the application of metal selenides is hindered by the huge volume variation, which causes electrode structure devastation and the consequent degrading cycling stability and rate capability. To overcome the aforementioned obstacles, herein, SnSe2 /FeSe2 nanocubes capsulated in nitrogen-doped carbon (SFS@NC) are fabricated via a facile co-precipitation method, followed by poly-dopamine wrapping and one-step selenization/carbonization procedure. The most remarkable feature of SFS@NC is the ultra-stability under high current density while delivering a large capacity. The synergistic effect of dual selenide components and core-shell architecture mitigates the volume effect, alleviates the agglomeration of nanoparticles, and further improves the electric conductivity. The as-prepared SFS@NC nanocubes present a high capacity of 408.1 mAh g-1 after 1200 cycles at 6 A g-1 , corresponding to an 85.3% retention, and can achieve a capacity of 345.0 mAh g-1 at an extremely high current density of 20 A g-1 . The outstanding performance of SFS@NC may provide a hint to future material structure design strategy, and promote further developments and applications of SIBs.

18.
ACS Appl Mater Interfaces ; 13(41): 48622-48633, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34619956

RESUMO

Although the lithium metal is considered as the most promising anode for high energy density batteries, uncontrolled lithium dendrite growth and continuous side reactions with electrolyte hinder its practical applications for rechargeable batteries. Herein, we prepared a gel polymer electrolyte by synthesizing a novel 250 nm filler (KMgF3), which is greatly beneficial to the formation of a uniformly deposited lithium-metal anode. This is due to the regulation effect of KMgF3 that double the lithium-ion transference number up to 0.63 and adjust the solid electrolyte interphase layer full of dense LiF and flexible polycarbonates, which greatly reduces the side reactions on the lithium-metal surface and inhibits the growth of lithium dendrites. Consequently, the composite gel polymer electrolyte guarantees a stable long cycle performance of more than 1400 h with 1 mA h cm-2 for symmetric cells. Moreover, the composite gel polymer electrolyte demonstrates high compatibility and great promise for rechargeable lithium-sulfur (Li-S) batteries.

19.
Adv Mater ; 33(49): e2105029, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34624162

RESUMO

Lithium metal is one of the most promising anode candidates for next-generation high-energy batteries. Nevertheless, lithium pulverization and associated loss of electrical contact remain significant challenges. Here, an antipulverization and high-continuity lithium metal anode comprising a small number of solid-state electrolyte (SSE) nanoparticles as conformal/sacrificial fillers and a copper (Cu) foil as the supporting current collector is reported. Guiding by the SSE, this new anode facilitates lithium nucleation, contributing to form a roundly shaped, micro-sized, and dendrite-free electrode during cycling, which effectively mitigates the lithium dendrite growth. The embedded Cu current collector in the hybrid anode not only reinforces the mechanical strength but also improves the efficient charge transfer among active lithium filaments, affording good electrode structural integrity and electrical continuity. As a result, this antipulverization and high-continuity lithium anode delivers a high average Coulombic efficiency of ≈99.6% for 300 cycles under a current density of 1 mA cm-2 . Lithium-sulfur batteries (elemental sulfur or sulfurized polyacrylonitrile cathodes) equipped with this anode show high-capacity retentions in their corresponding ether-based or carbonate-based electrolytes, respectively. This new electrode provides important insight into the design of electrodes that may experience large volume variation during operations.

20.
ACS Appl Mater Interfaces ; 13(28): 32957-32967, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34241994

RESUMO

The electrolyte based on magnesium bis(diisopropyl)amide (MBA), a low-cost and non-nucleophilic organic magnesium salt, is proposed to be an admirable alternative for rechargeable magnesium batteries but suffers from limited ionic conductivity and an inferior electrochemical window in the commonly used ether solvents. In this work, the 1-butyl-1-methylpiperidinium bis(trifluoromethyl sulfonyl)imide (PP14TFSI) ionic liquid as the cosolvent of tetrahydrofuran (THF) in chlorine-free MBA-based electrolytes has been first demonstrated to remarkably improve the ionic conductivity and broaden the oxidative stable potential (2.2 V vs Mg/Mg2+) on stainless steel. Reversible Mg electrochemical plating/stripping with a low overpotential below 200 mV and ca. 90% Coulombic efficiency are obtained. The current density of Mg plating/stripping is increased 238 times after the addition of PP14TFSI, where the mechanism of competitive coordination of TFSI- making an easier Mg plating/stripping is proposed theoretically. The MBA-2AlF3 electrolyte with a ratio-optimized THF/PP14TFSI cosolvent exhibits good compatibility with the Mo6S8 cathode. Furthermore, the Se@pPAN|Mg full cell exhibits an initial capacity of 447.8 mAh g-1 and as low as ∼0.66% capacity decay per cycle for more than 70 cycles at 0.2 C with the synergy of LiTFSI additives. The facile modification strategy of ionic liquid in the MBA-based electrolyte sheds inspiring light on exploring non-nucleophilic and chlorine-free electrolytes for practical rechargeable magnesium batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...