Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 21(43): 8744-8748, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37873567

RESUMO

A p-TsOH/halotrimethylsilane facilitated cycloketonization of γ-hydroxyl ynones is detailed. This methodology enables the one-step synthesis of polysubstituted 3(2H)-furanone products. It is remarkable that the reaction exhibits excellent regio- and chemoselectivity by the addition of very small quantities of p-toluenesulfonic acid and water.

2.
Carbohydr Polym ; 299: 120200, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876811

RESUMO

It has been reported that glycogen in Escherichia coli has two structural states, that is, fragility and stability, which alters dynamically. However, molecular mechanisms behind the structural alterations are not fully understood. In this study, we focused on the potential roles of two important glycogen degradation enzymes, glycogen phosphorylase (glgP) and glycogen debranching enzyme (glgX), in glycogen structural alterations. The fine molecular structure of glycogen particles in Escherichia coli and three mutants (ΔglgP, ΔglgX and ΔglgP/ΔglgX) were examined, which showed that glycogen in E. coli ΔglgP and E. coli ΔglgP/ΔglgX were consistently fragile while being consistently stable in E. coli ΔglgX, indicating the dominant role of GP in glycogen structural stability control. In sum, our study concludes that glycogen phosphorylase is essential in glycogen structural stability, leading to molecular insights into structural assembly of glycogen particles in E. coli.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Glicogenólise , Escherichia coli , Citoplasma , Glicogênio
3.
J Vis Exp ; (180)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35253795

RESUMO

Currently, there exist a variety of glycogen extraction methods, which either damage glycogen spatial structure or only partially extract glycogen, leading to the biased characterization of glycogen fine molecular structure. To understand the dynamic changes of glycogen structures and the versatile functions of glycogen particles in bacteria, it is essential to isolate glycogen with minimal degradation. In this study, a mild glycogen isolation method is demonstrated by using cold-water (CW) precipitation via sugar density gradient ultra-centrifugation (SDGU-CW). The traditional trichloroacetic acid (TCA) method and potassium hydroxide (KOH) method were also performed for comparison. A commonly used lab strain, Escherichia coli BL21(DE3), was used as a model organism in this study for demonstration purposes. After extracting glycogen particles using different methods, their structures were analyzed and compared through size exclusion chromatography (SEC) for particle size distribution and fluorophore-assisted capillary electrophoresis (FACE) for linear chain length distributions. The analysis confirmed that glycogen extracted via SDGU-CW had minimal degradation.


Assuntos
Escherichia coli , Glicogênio , Cromatografia em Gel , Escherichia coli/metabolismo , Glicogênio/metabolismo , Estrutura Molecular
4.
Microbiol Spectr ; 10(1): e0240921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107359

RESUMO

In clinical settings, rapid and accurate diagnosis of antibiotic resistance is essential for the efficient treatment of bacterial infections. Conventional methods for antibiotic resistance testing are time consuming, while molecular methods such as PCR-based testing might not accurately reflect phenotypic resistance. Thus, fast and accurate methods for the analysis of bacterial antibiotic resistance are in high demand for clinical applications. In this pilot study, we isolated 7 carbapenem-sensitive Klebsiella pneumoniae (CSKP) strains and 8 carbapenem-resistant Klebsiella pneumoniae (CRKP) strains from clinical samples. Surface-enhanced Raman spectroscopy (SERS) as a label-free and noninvasive method was employed for discriminating CSKP strains from CRKP strains through computational analysis. Eight supervised machine learning algorithms were applied for sample analysis. According to the results, all supervised machine learning methods could successfully predict carbapenem sensitivity and resistance in K. pneumoniae, with a convolutional neural network (CNN) algorithm on top of all other methods. Taken together, this pilot study confirmed the application potentials of surface-enhanced Raman spectroscopy in fast and accurate discrimination of Klebsiella pneumoniae strains with different antibiotic resistance profiles. IMPORTANCE With the low-cost, label-free, and nondestructive features, Raman spectroscopy is becoming an attractive technique with great potential to discriminate bacterial infections. In this pilot study, we analyzed surfaced-enhanced Raman spectroscopy (SERS) spectra via supervised machine learning algorithms, through which we confirmed the application potentials of the SERS technique in rapid and accurate discrimination of Klebsiella pneumoniae strains with different antibiotic resistance profiles.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Análise Espectral Raman/métodos , Análise Discriminante , Humanos , Klebsiella pneumoniae/química , Klebsiella pneumoniae/genética , Aprendizado de Máquina , Testes de Sensibilidade Microbiana , Redes Neurais de Computação , Projetos Piloto
5.
Front Microbiol ; 12: 705326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484145

RESUMO

According to the sit-and-wait hypothesis, long-term environmental survival is positively correlated with increased bacterial pathogenicity because high durability reduces the dependence of transmission on host mobility. Many indirectly transmitted bacterial pathogens, such as Mycobacterium tuberculosis and Burkhoderia pseudomallei, have high durability in the external environment and are highly virulent. It is possible that abiotic stresses may activate certain pathways or the expressions of certain genes, which might contribute to bacterial durability and virulence, synergistically. Therefore, exploring how bacterial phenotypes change in response to environmental stresses is important for understanding their potentials in host infections. In this study, we investigated the effects of different concentrations of salt (sodium chloride, NaCl), on survival ability, phenotypes associated with virulence, and energy metabolism of the lab strain Escherichia coli BW25113. In particular, we investigated how NaCl concentrations influenced growth patterns, biofilm formation, oxidative stress resistance, and motile ability. In terms of energy metabolism that is central to bacterial survival, glucose consumption, glycogen accumulation, and trehalose content were measured in order to understand their roles in dealing with the fluctuation of osmolarity. According to the results, trehalose is preferred than glycogen at high NaCl concentration. In order to dissect the molecular mechanisms of NaCl effects on trehalose metabolism, we further checked how the impairment of trehalose synthesis pathway (otsBA operon) via single-gene mutants influenced E. coli durability and virulence under salt stress. After that, we compared the transcriptomes of E. coli cultured at different NaCl concentrations, through which differentially expressed genes (DEGs) and differential pathways with statistical significance were identified, which provided molecular insights into E. coli responses to NaCl concentrations. In sum, this study explored the in vitro effects of NaCl concentrations on E. coli from a variety of aspects and aimed to facilitate our understanding of bacterial physiological changes under salt stress, which might help clarify the linkages between bacterial durability and virulence outside hosts under environmental stresses.

6.
Front Microbiol ; 12: 683580, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349740

RESUMO

Infectious diseases caused by bacterial pathogens are important public issues. In addition, due to the overuse of antibiotics, many multidrug-resistant bacterial pathogens have been widely encountered in clinical settings. Thus, the fast identification of bacteria pathogens and profiling of antibiotic resistance could greatly facilitate the precise treatment strategy of infectious diseases. So far, many conventional and molecular methods, both manual or automatized, have been developed for in vitro diagnostics, which have been proven to be accurate, reliable, and time efficient. Although Raman spectroscopy (RS) is an established technique in various fields such as geochemistry and material science, it is still considered as an emerging tool in research and diagnosis of infectious diseases. Based on current studies, it is too early to claim that RS may provide practical guidelines for microbiologists and clinicians because there is still a gap between basic research and clinical implementation. However, due to the promising prospects of label-free detection and noninvasive identification of bacterial infections and antibiotic resistance in several single steps, it is necessary to have an overview of the technique in terms of its strong points and shortcomings. Thus, in this review, we went through recent studies of RS in the field of infectious diseases, highlighting the application potentials of the technique and also current challenges that prevent its real-world applications.

7.
Org Lett ; 15(20): 5270-3, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24090099

RESUMO

The first Pd(II)-catalyzed C-H addition to isatins by direct sp(2)/sp(3) C-H bond activation for the construction of 3-substituted-3-hydroxy-2-oxindoles is reported. The bidentate nitrogen ligands were found to promote this reaction. Specifically, the preliminary bioassay indicated that 3-(5-chlorobenzoxazole)-3-hydroxy-N-benzyl-2-oxindole (2w) is a new inhibitor of human kidney cancer and hepatocellular carcinoma cells. Moreover, this reaction system exhibits great functional group tolerance and requires no directing group, extra base, or additives.

8.
Org Lett ; 15(19): 5024-7, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24053610

RESUMO

A novel and selective method of simple copper-salt catalyzed phosphonation of α-amino carbonyl compounds to afford imidoylphosphonates is reported. This reaction system has a broad reaction scope. The convenient and environmentally benign process makes this protocol very attractive.


Assuntos
Cetonas/química , Compostos Organofosforados/síntese química , Catálise , Cobre , Estrutura Molecular , Compostos Organofosforados/química , Oxirredução , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...