Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 80(5): 778-791, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38237865

RESUMO

BACKGROUND & AIMS: Endoplasmic reticulum (ER) stress of hepatocytes plays a causative role in non-alcoholic fatty liver disease (NAFLD). Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. Whether ER stress regulates HNF4α expression remains unknown. The aim of this study was to delineate the machinery of HNF4α protein degradation and explore a therapeutic strategy based on protecting HNF4α stability during NAFLD progression. METHODS: Correlation of HNF4α and tribbles homologue 3 (TRIB3), an ER stress sensor, was evaluated in human and mouse NAFLD tissues. RNA-sequencing, mass spectrometry analysis, co-immunoprecipitation, in vivo and in vitro ubiquitination assays were used to elucidate the mechanisms of TRIB3-mediated HNF4α degradation. Molecular docking and co-immunoprecipitation analyses were performed to identify a cell-penetrating peptide that ablates the TRIB3-HNF4α interaction. RESULTS: TRIB3 directly interacts with HNF4α and mediates ER stress-induced HNF4α degradation. TRIB3 recruits tripartite motif containing 8 (TRIM8) to form an E3 ligase complex that catalyzes K48-linked polyubiquitination of HNF4α on lysine 470. Abrogating the degradation of HNF4α attenuated the effect of TRIB3 on a diet-induced NAFLD model. Moreover, the TRIB3 gain-of-function variant p.Q84R is associated with NAFLD progression in patients, and induces lower HNF4α levels and more severe hepatic steatosis in mice. Importantly, disrupting the TRIB3-HNF4α interaction using a cell-penetrating peptide restores HNF4α levels and ameliorates NAFLD progression in mice. CONCLUSIONS: Our findings unravel the machinery of HNF4α protein degradation and indicate that targeting TRIB3-TRIM8 E3 complex-mediated HNF4α polyubiquitination may be an ideal strategy for NAFLD therapy. IMPACT AND IMPLICATIONS: Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. However, the mechanism of HNF4α protein degradation remains unknown. Herein, we reveal that TRIB3-TRIM8 E3 ligase complex is responsible for HNF4α degradation during NAFLD. Inhibiting the TRIB3-HNF4α interaction effectively stabilized HNF4α protein levels and transcription factor activity in the liver and ameliorated TRIB3-mediated NAFLD progression. Our findings demonstrate that disturbing the TRIM8-TRIB3-HNF4α interaction may provide a novel approach to treat NAFLD and even other liver diseases by stabilizing the HNF4α protein.


Assuntos
Peptídeos Penetradores de Células , Hepatopatia Gordurosa não Alcoólica , Proteínas Serina-Treonina Quinases , Animais , Humanos , Camundongos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Peptídeos Penetradores de Células/metabolismo , Fígado/patologia , Simulação de Acoplamento Molecular , Proteínas do Tecido Nervoso , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras , Ubiquitina-Proteína Ligases/metabolismo
2.
FEBS Lett ; 591(13): 1947-1957, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28547778

RESUMO

Hepatocyte nuclear factor 1α (HNF1α) is a liver-enriched transcription factor that is critical for the maintenance of hepatocyte function. Our previous studies have demonstrated the therapeutic effects of HNF1α on hepatic fibrosis and hepatocellular carcinoma (HCC) in animals. In this study, we created hepatocyte-specific Hnf1α knockout mice using the Cre-loxP recombination system. The knockout mice display increased fatty acid synthesis in the liver. Moreover, these mice spontaneously develop HCC through fatty liver without cirrhosis. Inflammatory cytokines, such as tumor necrosis factor α and IL-6, are upregulated and accompanied by increased phosphorylation of Akt, p-65 and STAT3 in the livers of HNF1α knockout mice. Our findings suggest that HNF1α plays a crucial role in hepatocyte lipid metabolism and hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular/genética , Deleção de Genes , Fator 1-alfa Nuclear de Hepatócito/deficiência , Fator 1-alfa Nuclear de Hepatócito/genética , Hepatócitos/metabolismo , Neoplasias Hepáticas/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Carcinogênese , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
J Infect Dis ; 214(11): 1762-1772, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27658692

RESUMO

BACKGROUND: MASM, a novel derivative of matrine, has inhibitory effects on activation of macrophages, dendritic cells, and hepatic stellate cells and binds to ribosomal protein S5 (RPS5). This study was designed to evaluate the effect of MASM on murine-established lethal sepsis and its mechanisms. METHODS: Mouse peritoneal macrophages and RAW264.7 cells that were infected with recombinant lentiviruses encoding shRPS5 were incubated with lipopolysaccharide (LPS) in the absence or presence of MASM in vitro. Endotoxemia induced by LPS injection and sepsis induced by cecal ligation and puncture was followed by MASM treatment. RESULTS: MASM markedly attenuated LPS-induced release and messenger RNA expression of tumor necrosis factor α, interleukin 6, and NO/inducible NO synthase in murine peritoneal macrophages and RAW264.7 cells. Meanwhile, MASM inhibited LPS-induced activation of nuclear factor κB and MAPK pathways. Consistently, RPS5 suppressed LPS-induced inflammatory responses and at least in part mediated the antiinflammatory effect of MASM in vitro. Remarkably, delayed administration of MASM could significantly reduce mortality in mouse sepsis models, which was associated with the reduction in the inflammatory response, the attenuation in multiple organ injury, and the enhanced bacterial clearance. CONCLUSIONS: MASM could be further explored for the treatments of sepsis, especially for administration later after the onset of sepsis.


Assuntos
Alcaloides/administração & dosagem , Fatores Imunológicos/administração & dosagem , Inflamação/tratamento farmacológico , Inflamação/patologia , Quinolizinas/administração & dosagem , Sepse/tratamento farmacológico , Sepse/patologia , Animais , Modelos Animais de Doenças , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7/efeitos dos fármacos , Células RAW 264.7/imunologia , Análise de Sobrevida , Matrinas
4.
Int Immunopharmacol ; 36: 59-66, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27107799

RESUMO

Dendritic cell (DC) maturation process is a crucial step for the development of T cell immune responses and immune tolerance. In this study, we evaluated MASM, a novel derivative of the natural compound matrine that possesses a significant anti-inflammatory and immune-regulating property, for its efficacy to inhibit lipopolysaccharides (LPS)-induced maturation of murine bone marrow-derived dendritic cells. Here we show that MASM profoundly suppresses LPS-induced phenotypic and functional DC maturation. MASM inhibited LPS-induced expression of costimulatory molecules CD80 and CD86 in a concentration-dependent manner. MASM also attenuated LPS-induced IL-12p70, TNF-α, IL-6 and NO release of DCs. The MASM-treated DCs were highly efficient at antigen capture via mannose receptor-mediated endocytosis but showed weak stimulatory capacity for allogeneic T cell proliferation. Furthermore, MASM inhibited LPS-induced PI3K/Akt, MAPK and NF-κB pathways. These novel findings provide new insight into the immunopharmacological role of MASM in impacting on the DCs.


Assuntos
Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Células Dendríticas/efeitos dos fármacos , Quinolizinas/farmacologia , Sophora/imunologia , Células Th1/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/fisiologia , Endocitose/efeitos dos fármacos , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Th1/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Matrinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...