Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 12: 746599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721273

RESUMO

The one-leg stance is frequently used in balance training and rehabilitation programs for various balance disorders. There are some typical one-leg stance postures in Tai Chi (TC) and yoga, which are normally used for improving balance. However, the mechanism is poorly understood. Besides, the differences of one-leg stance postures between TC and yoga in training balance are still unknown. Therefore, the aim of the present study was to investigate cortical activation and rambling and trembling trajectories to elucidate the possible mechanism of improving one-leg stance balance, and compare the postural demands during one-leg stance postures between TC and yoga. Thirty-two healthy young individuals were recruited to perform two TC one-leg stance postures, i.e., right heel kick (RHK) and left lower body and stand on one leg (LSOL), two yoga postures, i.e., one-leg balance and Tree, and normal one-leg standing (OLS). Brain activation in the primary motor cortex, supplementary motor area (SMA), and dorsolateral prefrontal cortex (DLPFC) was measured using functional near-infrared spectroscopy. The center of pressure was simultaneously recorded using a force platform and decomposed into rambling and trembling components. One-way repeated-measures analysis of variance was used for the main effects. The relative concentration changes of oxygenated hemoglobin (ΔHbO) in SMA were significantly higher during RHK, LSOL, and Tree than that during OLS (p < 0.001). RHK (p < 0.001), LSOL (p = 0.003), and Tree (p = 0.006) all showed significantly larger root mean square rambling (RmRMS) than that during OLS in the medial-lateral direction. The right DLPFC activation was significantly greater during the RHK than that during the Tree (p = 0.023), OLB (p < 0.001), and OLS (p = 0.013) postures. In conclusion, the RHK, LSOL, and Tree could be used as training movements for people with impaired balance. Furthermore, the RHK in TC may provide more cognitive training in postural control than Tree and OLB in yoga. Knowledge from this study could be used and implemented in training one-leg stance balance.

2.
Front Bioeng Biotechnol ; 8: 1007, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974323

RESUMO

There is a significant influence of muscle fatigue on the coupling of antagonistic muscles while patients with post-stroke spasticity are characterized by abnormal antagonistic muscle coactivation activities. This study was designed to verify whether the coupling of antagonistic muscles in patients with post-stroke spasticity is influenced by muscle fatigue. Ten patients with chronic hemipare and spasticity and 12 healthy adults were recruited to participate in this study. Each participant performed a fatiguing isometric elbow flexion of the paretic side or right limb at 30% maximal voluntary contraction (MVC) level until exhaustion while surface electromyographic (sEMG) signals were collected from the biceps brachii (BB) and triceps brachii (TB) muscles during the sustained contraction. sEMG signals were divided into the first (minimal fatigue) and second halves (severe fatigue) of the contraction. The power and coherence between the sEMG signals of the BB and TB in the alpha (8-12 Hz), beta (15-35 Hz), and gamma (35-60 Hz) frequency bands associated with minimal fatigue and severe fatigue were calculated. The coactivation ratio of the antagonistic TB muscle was also determined during the sustained fatiguing contraction. The results demonstrated that there was a significant decrease in maximal torque during the post-fatigue contraction compared to that during the pre-fatigue contraction in both stroke and healthy group. In the stroke group, EMG-EMG coherence between the BB and TB in the alpha and beta frequency bands was significantly increased in severe fatigue compared to minimal fatigue, while coactivation of antagonistic muscle increased progressively during the sustained fatiguing contraction. In the healthy group, coactivation of the antagonistic muscle showed no significant changes during the fatiguing contraction and no significant coherence was found in the alpha, beta and gamma frequency bands between the first and second halves of the contraction. Therefore, the muscle fatigue significantly increases the coupling of antagonistic muscles in patients with post-stroke spasticity, which may be related to the increased common corticospinal drive from motor cortex to the antagonistic muscles. The increase in antagonistic muscle coupling induced by muscle fatigue may provide suggestions for the design of training program for patients with post-stroke spasticity.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32850762

RESUMO

Stroke survivors adopt cautious or compensatory strategies for safe and successful obstacle crossing. Although knee extensor spasticity is a common independent secondary sensorimotor disorder post-stroke, few studies have examined the step adjustment and compensatory strategies used by stroke survivors with knee extensor spasticity during obstacle crossing. This study aimed to compare the differences in the kinematics and kinetics during obstacle crossing between stroke survivors with and without knee extensor spasticity, and to identify knee extensor spasticity-related differences in step adjustment and compensatory strategies. Twenty stroke subjects were divided into a spasticity group [n = 11, modified Ashworth scale (MAS) ≥ 1] and a non-spasticity group (n = 9, MAS = 0), based on the MAS score of the knee extensor. Subjects were instructed to walk at a self-selected speed on a 10-m walkway and step over a 15 cm obstacle. A ten-camera 3D motion analysis system and two force plates were used to collect the kinematic and kinetic data. During the pre-obstacle phase, stroke survivors with knee extensor spasticity adopted a short-step strategy to approach the obstacle, while the subjects without spasticity used long-step strategy. During the affected limb swing phase, the spasticity group exhibited increased values that were significantly higher than those seen in the non-spasticity group for the following measurements: pelvic lateral tilt angle, trunk lateral tilt angle, medio-lateral distance between the ankle and ipsilateral hip joint, hip work contributions, the inclination angles between center of mass and center of pressure in anterior-posterior and medio-lateral directions. These results indicate that the combined movement of the pelvic, trunk lateral tilt, and hip abduction is an important compensatory strategy for successful obstacle crossing, but it sacrifices some balance in the sideways direction. During the post-obstacle phase, short-step and increase step width strategy were adopted to reestablish the walking pattern and balance control. These results reveal the step adjustment and compensatory strategies for obstacle crossing and also provide insight into the design of rehabilitation interventions for fall prevention in stroke survivors with knee extensor spasticity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...