Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3944, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729947

RESUMO

Metasurface enables the generation and manipulation of multiphoton entanglement with flat optics, providing a more efficient platform for large-scale photonic quantum information processing. Here, we show that a single metasurface optical device would allow more efficient characterizations of multiphoton entangled states, such as shadow tomography, which generally requires fast and complicated control of optical setups to perform information-complete measurements, a demanding task using conventional optics. The compact and stable device here allows implementations of general positive operator valued measures with a reduced sample complexity and significantly alleviates the experimental complexity to implement shadow tomography. Integrating self-learning and calibration algorithms, we observe notable advantages in the reconstruction of multiphoton entanglement, including using fewer measurements, having higher accuracy, and being robust against experimental imperfections. Our work unveils the feasibility of metasurface as a favorable integrated optical device for efficient characterization of multiphoton entanglement, and sheds light on scalable photonic quantum technologies with ultra-thin optical devices.

2.
Opt Express ; 31(13): 20930-20940, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381205

RESUMO

Mid-infrared (MIR) microcomb provides a new way into the "molecular fingerprint" region. However, it remains rather a challenge to realize the broadband mode-locked soliton microcomb, which is often limited by the performance of available MIR pump sources and coupling devices. Here, we propose an effective approach towards broadband MIR soliton microcombs generation via a direct pump in the near-infrared (NIR) region, through full utilization of the second- and third-order nonlinearities in a thin-film lithium niobate microresonator. The optical parametric oscillation process contributes to conversion from the pump at 1550 nm to the signal around 3100 nm, and the four-wave mixing effect promotes spectrum expansion and mode-locking process. While the second-harmonic and sum-frequency generation effects facilitate simultaneous emission of the NIR comb teeth. Both the continuous wave and pulse pump sources with relatively low power can support a MIR soliton with a bandwidth over 600 nm and a concomitant NIR microcomb with a bandwidth of 100 nm. This work can provide a promising solution for broadband MIR microcombs by breaking through the limitation of available MIR pump sources, and can deepen the understanding of the physical mechanism of the quadratic soliton assisted by the Kerr effect.

3.
Appl Opt ; 61(10): 2629-2633, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471332

RESUMO

Midinfrared (MIR) optical frequency combs are of great significance as broadband coherent light sources used in extensive areas such as coherent communications and molecule detections. Conventional MIR combs are usually restricted in size and power, while most microcombs are focused in the near-infrared (NIR) region because of the limited accessible Q-factor of microrings and the poor performances of available pumps. In this paper, we numerically demonstrate the simultaneous generation of a broadband MIR and NIR comb in a GaP microring with an additive waveguide. The achieved octave-spanning (1890-4050 nm) MIR microcomb at a low pump power of 34 mW can be effectively converted to the second-harmonic NIR comb covering 1120-1520 nm with separate dispersion optimization of the ring cavity and straight waveguide. The proposed system has the advantage of simple structure and low power threshold, which could find potential in highly integrated MIR optical sources and related applications.

4.
Nanotechnology ; 33(21)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35133297

RESUMO

Mid-infrared optical parametric oscillators (OPOs) offer a compelling route for accessing the 'molecular fingerprint' region and, thus, can find intensive applications such as precision spectroscopy and trace gas detection. Yet it still remains rather a challenge to realize broadband mid-infrared OPOs within a single cavity, usually limited by strict phase-matching conditions for wide spectral coverage and available pump power for adequate frequency generation. Here, we report the mid-infrared parametric oscillation spanning from 3.4 to 8.2µm, based on four-wave mixing in a high-QMgF2microresonator with optimized dispersion. The center wavelength at 4.78µm is determined by the continuous tunable quantum cascade laser source, which contributes to effective expansion towards longer wavelength, as well as systemic miniaturization with smaller pump module. Such results could not only shed light on new ultimates of crystal and other microresonators, but also inspire explorations on their growing potentials in near future.

5.
Appl Opt ; 59(4): 1187-1192, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32225259

RESUMO

We investigate the influence of third-order dispersion of dispersive elements, three-photon absorption and free-carrier effects on mid-infrared time magnification via four-wave mixing (FWM) in ${{\rm Si}_{0.8}}{{\rm Ge}_{0.2}}$Si0.8Ge0.2 waveguides. It is found that the magnified waveform is seriously distorted by these factors, and conversion efficiency is decreased, mainly because of nonlinear absorption. A time lens based on FWM in ${{\rm Si}_{0.8}}{{\rm Ge}_{0.2}}$Si0.8Ge0.2 waveguides is proposed for time magnification of mid-infrared ultrashort pulses, in which the low-distortion, high-magnification in the time domain could be obtained by optimizing system parameters. These results make it possible to analyze the transient dynamic process through oscilloscopes and detectors with gigahertz bandwidth and have important applications in ultrafast process analysis, optical pulse sampling, and optical communications.

6.
Appl Opt ; 59(7): 2101-2107, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32225734

RESUMO

We numerically demonstrate orthogonally polarized dual-comb generation in a single microcavity with normal dispersion assisted by the cross-phase modulation (XPM) effect. It is found that the XPM effect facilitates the emission of a secondary polarized comb with different temporal properties in a wide existence range covering the blue- to red-detuned regime and thus releases the requirements for delicate control on the detuned region of pump frequency. Also, the energy transfer between two polarization components together with the normal-dispersion property contributes to a more balanced intensity difference and significantly increased conversion efficiency from the pump light into the comb operation. This work could provide a route to a low-cost and compact mid-infrared dual-comb system with a lower power requirement as well as an effective approach to higher comb teeth power with improved efficiency for practical applications.

7.
Opt Express ; 28(1): 641-651, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118987

RESUMO

We present the first demonstration of visible emission from highly doped silica glass micro-ring resonators (MRRs) through a third-harmonic generation (THG) nonlinear process. We obtain green light conversion efficiency of 2.7×10-5 W-2 in a MRR with loaded Q-factor of 1.4×106 pumped in the telecom band. A thermal nonlinear model is developed to account for the in-cavity power dependence of the resonance detuning. Using the extracted thermal nonlinear coefficients, the measured TH resonance shift is calibrated by subtracting the thermal nonlinear-induced phase mismatch to obtain the theoretical threefold wavelength relationship along with the measured cubic power relationship.

8.
Opt Express ; 26(13): 16477-16487, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30119478

RESUMO

We theoretically and numerically investigate the effects of high-order dispersion (HOD) on microcavity solitons, both in time and frequency domain with an extended normalized Lugiato-Lefever equation (LLE). The observed temporal drift of bright and dark solitons is shown to originate from high-odd-order dispersion, while the sign determines the direction of soliton movement and the amplitude decides the drift speed. HOD can also be introduced to stabilize the breathing bright and dark cavity solitons. In spectral domain, the nonlinear symmetry breaking is mainly introduced by third-order dispersion, whereas both third- and fourth-order dispersion can introduce dispersive wave accompanied by soliton tail oscillation. This work could give insight for exploring detailed intracavity pulse dynamics and spectral characteristics of Kerr combs influenced by HOD, as well as provide a viable route to delicate control of Kerr comb generation through tailoring the dispersion parameters.

9.
Opt Lett ; 43(17): 4156-4159, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30160740

RESUMO

We have numerically studied the optical bistability in guided-mode resonance-assisted nonlinear grating nanostructure. A low-index slot is introduced to significantly improve the confinement of light in nonlinear material. In this way, the proposed novel configuration possesses low-threshold optical switching intensity (∼3 MW/cm2), which is about 58 times lower than that of typical nonlinear grating nanostructure without the low-index slot. This bistability study provides an effective method to reduce the threshold of optical switching intensity and thus can be applied in optical logic, optical computation, and all-optical memory.

10.
Opt Lett ; 43(9): 2002-2005, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714731

RESUMO

We demonstrate robust soliton crystals generation with a fixed frequency pump laser through a thermoelectric-cooler-based thermal-tuning approach in a butterfly-packaged complementary-metal-oxide-semiconductor-compatible microresonator. Varieties of soliton crystal states, exhibiting "palm-like" optical spectra that result from the strong interactions between the dense soliton ensembles and reflect their temporal distribution directly, are experimentally observed by sweeping one cavity resonance across the pump frequency from the blue-detuned side by reducing the operating temperature of the resonator. Benefitting from the tiny intra-cavity energy change, repeatable interconversion between the chaotic modulation instability and stable soliton crystal states can be successfully achieved via simple tuning of the temperature or pump power, showing the easy accessibility and excellent stability of such soliton crystals. This work could facilitate microresonator-based optical frequency combs towards a portable, adjustable, and low-cost system while avoiding the requirements of delicate frequency-sweeping pump techniques.

11.
Appl Opt ; 57(4): 829-833, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400747

RESUMO

A 2D planar self-collimating photonic crystal, based on a dielectric square lattice and a hexagonal lattice, is proposed. We demonstrate that the proposed structure can support the propagation of a hybrid surface plasmon polarition (SPP) mode with a loss of -0.017 dB/µm, and the mode size is only 0.33 µm. The defined figure of merit is one order of magnitude higher than that of the dielectric-metal structure. In addition, the self-collimating angle of more than 10° can be tuned with a silica index change of 0.08. The proposed structure possesses broad operation bandwidth of 88 nm and 58 nm for a dielectric square lattice and a hexagonal lattice, respectively. These two kinds of photonic crystals promise potential applications in photonic modulators and SPP photonic devices.

12.
Sci Rep ; 6: 28501, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27338250

RESUMO

In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness.

13.
Opt Express ; 20(1): 265-70, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22274349

RESUMO

We have experimentally observed conventional solitons and rectangular pulses in an erbium-doped fiber laser operating at anomalous dispersion regime. The rectangular pulses exhibit broad quasi-Gaussian spectra (~40 nm) and triangular autocorrelation traces. With the enhancement of pump power, the duration and energy of the output rectangular pulses almost increase linearly up to 330 ps and 3.2 nJ, respectively. It is demonstrated that high-energy pulses can be realized in anomalous-dispersion regime, and may be explained as dissipative soliton resonance. Our results have confirmed that the formation of dissipative soliton resonance is not sensitive to the sign of cavity dispersion.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Lasers , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
14.
Opt Express ; 19(17): 16303-8, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21934993

RESUMO

We experimentally demonstrate unequal pulses delivered from an erbium-doped fiber (EDF) laser with net-normal dispersion. Two types of pulses with different durations, energies, and spectra coexist in the same ring cavity. The output spectrum exhibits a broadband base that corresponds to the main pulse and a small rectangular lump that corresponds to the additional satellite pulse. With the enhancement of pump power, the intensity of main pulse almost keeps unchanged while the satellite pulse nearly increases linearly. Based on experimental results, it is indicated that two different pulse shaping mechanisms coexist in laser cavity, where the nonlinear polarization rotation (NPR) and spectral filtering (SF) effect contribute to the formation of main pulse and satellite pulse, respectively.

15.
Opt Express ; 19(19): 18393-8, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21935207

RESUMO

Based on a two-dimensional plasmonic metal-dielectric-metal (MDM) waveguide with a thin metallic layer and a dielectric photonic crystal in the core, a novel absorber at visual and near-infrared frequencies is presented. The absorber spectra and filed distributions are investigated by the transfer-matrix-method and the finite-difference time-domain method. Numerical results show that attributing to excitation of the optical Tamm states in the MDM waveguide core, the optical wave is trapped in the proposed structure without reflection and transmission, leading to perfect absorption as high as 0.991. The proposed absorber can find useful application in all-optical integrated photonic circuits.

16.
Appl Opt ; 50(27): 5287-90, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21947047

RESUMO

We numerically investigate the optical bistability effect in the metal-insulator-metal waveguide with a nanodisk resonator containing a Kerr nonlinear medium. It is found that the increase of the refractive index, which is induced by enhancing the incident intensity, can cause a redshift for the resonance wavelength. The local resonant field excited in the nanodisk cavity can significantly increase the Kerr nonlinear effect. In addition, an obvious bistability loop is observed in the proposed structure. This nonlinear structure can find important applications for all-optical switching in highly integrated optical circuits.

17.
Opt Express ; 19(14): 12885-90, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21747440

RESUMO

We propose and numerically investigate a novel kind of nanoscale plasmonic wavelength demultiplexing (WDM) structure based on channel drop filters in metal-insulator-metal waveguide with reflection nanocavities. By using finite-difference time-domain simulations, it is found that the transmission efficiency of the channel drop filter can be significantly enhanced by selecting the proper distance between the drop and reflection cavities. The result can be exactly analyzed by the temporal coupled-mode theory. According to this principle, a nanoscale triple-wavelength demultiplexer with high drop efficiencies is designed. The proposed structure can find more applications for the ultra-compact WDM systems in highly integrated optical circuits.


Assuntos
Filtração/instrumentação , Nanotecnologia/instrumentação , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Opt Express ; 19(10): 9759-69, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21643233

RESUMO

Absorption properties in one-dimensional quasiperiodic photonic crystal composed of a thin metallic layer and dielectric Fibonacci multilayers are investigated. It is found that a large number of photonic stopbands can occur at the dielectric Fibonacci multilayers. Tamm plasmon polaritons (TPPs) with the frequencies locating at each photonic stopband are excited at the interface between the metallic layer and the dielectric layer, leading to almost perfect absorption for the energy of incident wave. By adjusting the length of dielectric layer with higher refractive-index or the Fibonacci order, the number of absorption peaks can be tuned effectively and enlarged significantly.

19.
Opt Express ; 19(8): 7616-24, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21503070

RESUMO

Four different types of pulses are experimentally obtained in one erbium-doped all-fiber laser with large net-normal dispersion. The proposed laser can deliver the rectangular-spectrum (RS), Gaussian-spectrum (GS), broadband-spectrum (BS), and noise-like pulses by appropriately adjusting the polarization states. These kinds of pulses have distinctly different characteristics. The RS pulses can easily be compressed to femtosecond level whereas the pulse energy is restricted by the trend of multi-pulse shaping with excessive pump. The GS and BS pulses always maintain the single-pulse operation with much higher pulse-energy and accumulate much more chirp. After launching the pulses into the photonic-crystal fiber, the supercontinuum can be generated with the bandwidth of >700 nm by the BS pulses and of ~400 nm by the GS pulses, whereas it can hardly be generated by the RS pulses. The physical mechanisms behind the continuum generation are qualitatively investigated relating to different operating regimes. This work could help to a deeper insight of the normal-dispersion pulses.

20.
Appl Opt ; 50(10): 1307-11, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21460893

RESUMO

We numerically investigate the characteristics of the defect mode and the nonlinear effect of optical bistability in metal-insulator-metal (MIM) plasmonic Bragg grating waveguides with Kerr nonlinear defects. By means of finite-difference time-domain simulations, we find that the defect mode peak exhibits a blueshift and height-rise by enlarging the width of the defect layer, and it has a redshift and height-fall with the increase of the dielectric constant of defect layer. Obvious optical bistability is obtained in our waveguides with a length of less than 2 µm. The results show that our structure could be applied to the design of all-optical switching in highly integrated optical circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...