Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1356922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628367

RESUMO

Among the bioactive compounds, lipid-soluble tanshinone is present in Salvia miltiorrhiza, a medicinal plant species. While it is known that ethephon has the ability to inhibit the tanshinones biosynthesis in the S. miltiorrhiza hairy root, however the underlying regulatory mechanism remains obscure. In this study, using the transcriptome dataset of the S. miltiorrhiza hairy root induced by ethephon, an ethylene-responsive transcriptional factor EIN3-like 1 (SmEIL1) was identified. The SmEIL1 protein was found to be localized in the nuclei, and confirmed by the transient transformation observed in tobacco leaves. The overexpression of SmEIL1 was able to inhibit the tanshinones accumulation to a large degree, as well as down-regulate tanshinones biosynthetic genes including SmGGPPS1, SmHMGR1, SmHMGS1, SmCPS1, SmKSL1 and SmCYP76AH1. These are well recognized participants in the tanshinones biosynthesis pathway. Further investigation on the SmEIL1 was observed to inhibit the transcription of the CPS1 gene by the Dual-Luciferase (Dual-LUC) and yeast one-hybrid (Y1H) assays. The data in this work will be of value regarding the involvement of EILs in regulating the biosynthesis of tanshinones and lay the foundation for the metabolic engineering of bioactive ingredients in S. miltiorrhiza.

2.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260486

RESUMO

The precise spatio-temporal expression of the hematopoietic ETS transcription factor PU.1 that determines the hematopoietic cell fates is tightly regulated at the chromatin level. However, it remains elusive as to how chromatin signatures are linked to this dynamic expression pattern of PU.1 across blood cell lineages. Here we performed an unbiased and in-depth analysis of the relationship between human PU.1 expression, the presence of trans-acting factors, and 3D architecture at various cis-regulatory elements (CRE) proximal to the PU.1 locus. We identified multiple novel CREs at the upstream region of the gene following an integrative inspection for conserved DNA elements at the chromatin-accessible regions in primary human blood lineages. We showed that a subset of CREs localize within a 10 kb-wide cluster that exhibits that exhibit molecular features of a myeloid-specific super-enhancer involved in mediating PU.1 autoregulation, including open chromatin, unmethylated DNA, histone enhancer marks, transcription of enhancer RNAs, and occupancy of the PU.1 protein itself. Importantly, we revealed the presence of common 35-kb-wide CTCF-bound insulated neighborhood that contains the CRE cluster, forming the chromatin territory for lineage-specific and CRE-mediated chromatin interactions. These include functional CRE-promoter interactions in myeloid and B cells but not in erythroid and T cells. Our findings also provide mechanistic insights into the interplay between dynamic chromatin structure and 3D architecture in defining certain CREs as enhancers or silencers in chromatin regulation of PU.1 expression. The study lays the groundwork for further examination of PU.1 CREs as well as epigenetic regulation in malignant hematopoiesis.

3.
J Sci Food Agric ; 104(4): 2030-2037, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37910399

RESUMO

BACKGROUND: Ochratoxin A (OTA) is a mycotoxin that contaminates grape-based products and is extremely harmful to the health of the host. It is effectively removed by yeast during the fermentation of wine, whereas the removal mechanism of OTA remains unclear. Therefore, the present study aimed to investigate the removal mechanism of ochratoxin A by yeast and to evaluate the safety of its degradation products. RESULTS: Cryptococcus albidus (20-G) with better effect on ochratoxin A (OTA) was screened out in the main fermentation stage of wine. The results showed that 20-G removed OTA through biosorption and biodegradation. Intracellular enzymes played the main role (18.44%) and yeast cell walls adsorbed a small amount of OTA (8.44%). Furthermore, the identification of proteins in 20-G revealed that the decrease in OTA content was mainly a result of the action of peroxidase, and validation tests were carried out. By analyzing the degradation products of OTA, OTα and phenylalanine with lower toxicity were obtained. Animal experiments showed that the intervention of yeast 20-G reduced the damage and adverse effects caused by OTA toxicity to the mice. CONCLUSION: The present study demonstrates the mechanism of OTA removal by 20-G and the toxicity of OTA was reduced by peroxidase in 20-G. © 2023 Society of Chemical Industry.


Assuntos
Basidiomycota , Ocratoxinas , Vinho , Animais , Camundongos , Vinho/análise , Saccharomyces cerevisiae/metabolismo , Contaminação de Alimentos/análise , Ocratoxinas/análise , Peroxidases/metabolismo
4.
Sci Adv ; 9(49): eadj3955, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064554

RESUMO

The discovery of magnetism in van der Waals (vdW) materials has established unique building blocks for the research of emergent spintronic phenomena. In particular, owing to their intrinsically clean surface without dangling bonds, the vdW magnets hold the potential to construct a superior interface that allows for efficient electrical manipulation of magnetism. Despite several attempts in this direction, it usually requires a cryogenic condition and the assistance of external magnetic fields, which is detrimental to the real application. Here, we fabricate heterostructures based on Fe3GaTe2 flakes that have room-temperature ferromagnetism with excellent perpendicular magnetic anisotropy. The current-driven nonreciprocal modulation of coercive fields reveals a high spin-torque efficiency in the Fe3GaTe2/Pt heterostructures, which further leads to a full magnetization switching by current. Moreover, we demonstrate the field-free magnetization switching resulting from out-of-plane polarized spin currents by asymmetric geometry design. Our work could expedite the development of efficient vdW spintronic logic, memory, and neuromorphic computing devices.

5.
Food Res Int ; 174(Pt 2): 113652, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981364

RESUMO

Kombucha is a natural fermented beverage (mixed system). This study aimed to unravel the signatures of kombucha in China to achieve tailor-made microbial consortium. Here, biochemical parameters, microbiome, metabolite production and volatile profile were comprehensively compared and characterized across four regions (AH, HN, SD, SX), both commonalities and distinctions were highlighted. The findings revealed that yeast species yeast Starmerella, Zygosaccharomyces, Dekkera, Pichia and bacterium Komagataeibacter, Gluconobacter were the most common microbes. Additionally, the composition, distribution and stability of microbial composition in liquid phase were superior to those in biofilm. The species diversity, differences, marker and association were analyzed across four areas. Metabolite profiles revealed a total of 163 bioactive compounds (23 flavonoids, 13 phenols), and 68 differential metabolites were screened and identified. Moreover, the metabolic pathways of phenylpropanoids biosynthesis were closely linked with the highest number of metabolites, followed by flavonoid biosynthesis. Sixty-five volatile compounds (23 esters) were identified. Finally, the correlation analysis among the microbial composition and volatile and functional metabolites showed that Komagataeibacter, Gluconolactone, Zygosacchaaromycess, Starmerella and Dekkera seemed closely related to bioactive compounds, especially Komagataeibacter displayed positive correlations with 1-hexadecanol, 5-keto-D-gluconate, L-malic acid, 6-aminohexanoate, Starmerella contributed greatly to gluconolactone, thymidine, anabasine, 2-isopropylmalic acid. Additionally, Candida was related to ß-damascenone and α-terpineol, and Arachnomyces and Butyricicoccus showed the consistency of associations with specific esters and alcohols. These findings provided crucial information for creating a stable synthetic microbial community structure, shedding light on fostering stable kombucha and related functional beverages.


Assuntos
Acetobacteraceae , Microbiota , Saccharomycetales , Metabolômica , Lactonas , China
6.
Nat Commun ; 14(1): 6367, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821464

RESUMO

Two-dimensional arrays of magnetically coupled nanomagnets provide a mesoscopic platform for exploring collective phenomena as well as realizing a broad range of spintronic devices. In particular, the magnetic coupling plays a critical role in determining the nature of the cooperative behavior and providing new functionalities in nanomagnet-based devices. Here, we create coupled Ising-like nanomagnets in which the coupling between adjacent nanomagnetic regions can be reversibly converted between parallel and antiparallel through solid-state ionic gating. This is achieved with the voltage-control of the magnetic anisotropy in a nanosized region where the symmetric exchange interaction favors parallel alignment and the antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction, favors antiparallel alignment of the nanomagnet magnetizations. Applying this concept to a two-dimensional lattice, we demonstrate a voltage-controlled phase transition in artificial spin ices. Furthermore, we achieve an addressable control of the individual couplings and realize an electrically programmable Ising network, which opens up new avenues to design nanomagnet-based logic devices and neuromorphic computers.

7.
mSphere ; 8(5): e0013423, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37754563

RESUMO

The gut microbiome is a potentially important mechanism that links prenatal disaster exposures with increased disease risks. However, whether prenatal disaster exposures are associated with alterations in the infant's gut microbiome remains unknown. We established a birth cohort study named Hurricane as the Origin of Later Alterations in Microbiome (HOLA) after Hurricane Maria struck Puerto Rico in 2017. We enrolled vaginally born Latino term infants aged 2 to 6 months, including n = 29 infants who were exposed in utero to Hurricane Maria in Puerto Rico and n = 34 infants who were conceived at least 5 months after the hurricane as controls. Shotgun metagenomic sequencing was performed on infant stool swabs. Infants exposed in utero to Hurricane Maria had a reduced diversity in their gut microbiome compared to the control infants, which was mainly seen in the exclusively formula-fed group (P = 0.02). Four bacterial species, including Bacteroides vulgatus, Clostridium innocuum, Bifidobacterium pseudocatenulatum, and Clostridium neonatale, were depleted in the exposure group compared to the control group. Compositional differences in the microbial community and metabolic genes between the exposure and control groups were significant, which were driven by the formula feeding group (P = 0.02 for the microbial community and P = 0.008 for the metabolic genes). Metabolic modules involved in carbohydrate metabolism were reduced in the exposure group. Prenatal maternal exposure to Hurricane Maria was associated with a reduced gut commensal and an altered microbial composition and metabolic potential in the offspring's gut. Breastfeeding can adjust the composition of the gut microbiomes of exposed infants. IMPORTANCE Climate change is a serious issue that is affecting human health. With more frequent and intense weather disasters due to climate change, there is an urgent need to evaluate and understand the impacts of prenatal disaster exposures on the offspring. The prenatal stage is a particularly vulnerable stage for disease origination. However, the impact of prenatal weather disaster exposures on the offspring's gut microbiome has not been evaluated. Our HOLA study starts to fill this knowledge gap and provides novel insights into the microbiome as a mechanism that links prenatal disaster exposures with elevated disease risks. Our major finding that reduced microbial diversity and altered metabolic capacity are associated with prenatal hurricane exposures warrants further studies to evaluate the impact of weather disasters on the unborn.


Assuntos
Tempestades Ciclônicas , Microbioma Gastrointestinal , Gravidez , Feminino , Humanos , Lactente , Estudos de Coortes , Fezes/microbiologia , Aleitamento Materno
8.
Crit Rev Food Sci Nutr ; : 1-28, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37357963

RESUMO

Fermented beverages (FBs) are facing challenges in functional performance and flavor complexity, necessitating the development of new multi-functional options. Traditional fermented beverages (TFBs), both alcoholic and nonalcoholic, have gained increased attention for their health-promoting effects during the COVID-19 pandemic. This review summarized the primary commercially available probiotics of FBs, along with the limitations of single and mixed probiotic FBs. It also examined the recent research progress on TFBs, emphasizing the typical microbial communities (MC) of TFBs, and TFBs made from crops (grains, vegetables, fruits, etc.) worldwide and their associated functions and health benefits. Furthermore, the construction, technical bottlenecks of the synthetic MC involved in developing innovative FBs were presented, and the promising perspective of FBs was described. Drawing inspiration from the MC of TFBs, developing of stable and multifunctional FBs using synthetic MC holds great promise for beverage industry. However, synthetic MC suffers from structural instability and poorly acknowledged interaction mechanisms, resulting in disappointing results in FBs. Future researches should prioritize creating synthetic MC fermentation that closely resemble natural fermentation, tailored to meet the needs of different consumers. Creating personalized FBs with high-tech intelligence is vital in attracting potential consumers and developing novel beverages for the future.

9.
J Sep Sci ; 46(6): e2200905, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36650901

RESUMO

A fully automated, closed-column chromatographic system with parallel multi-channel has been developed. This system is established with seven reagent reservoirs, one multi-channel syringe pump, eight 10-port valves, forty sample tubes, 40 columns, and a fraction collection tray. Four samples can be purified simultaneously at a time, and 40 samples can be purified in one batch. Each sample can be purified by an independent channel, avoiding cross-contamination. The sample tubes can be flipped upside down for automatic cleaning, which eliminates the residue of samples. Moreover, the fraction collection tray can collect up to 104 different target components. The key performance of the system has been investigated. The results show that the sample tubes are well-cleaned, the bubble does not affect the chemical behavior of columns, the consistency of the parallel channels is excellent and the blank of the system is negligible. The system was demonstrated by the purification of Sr from reference materials (BCR-2, JB-2, JB-3, and NIST SRM 987). The recoveries of Sr are better than 89.4% and the blank of the whole procedure is less than 200 pg. The Sr isotope values agree well with the reference values.

10.
Curr Res Food Sci ; 5: 1539-1549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161229

RESUMO

Ochratoxin A (OTA) is a secondary metabolite of several fungi and widely exists in various species of foods. The establishment of effective methods for OTA reduction is a key measure to ensure food processing and human health. This article reviews the current research of OTA reduction by biological approaches, summarizes the characteristics and efficiency of them, and evaluates the transformation pathways and metabolites safety of each degradation technology. The shortcomings of various methods are pointed out and future prospects are also proposed. Biological methods are the most promising approaches for OTA control. The defect of them is the long processing time and the growth of microbial cells may affect the product quality. Therefore, the control of OTA contamination should be conducted according to the food processing and their product types. Besides, it is significant for the exploitation of new strains, enzyme and novel adsorbents.

11.
J Allergy Clin Immunol Glob ; 1(3): 128-137, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36091489

RESUMO

Background: Prenatal adverse exposures have been associated with increased risks of development of respiratory diseases in children. The infant nasal microbiome is an important mechanism and indicator. Objective: Our aim was to characterize and compare the nasal microbiome of infants who were in utero and exposed to Hurricane Maria in Puerto Rico during 2017 with that of infants who were conceived at least 5 months after the hurricane as controls. Methods: We recruited 63 vaginally born infants, 29 of whom were in the exposure group and 34 of whom were in the control group. Nasal swab samples were collected and analyzed by using 16S ribosomal RNA gene sequencing at the community and taxon levels, respectively. Results: Infants in the exposure group were more likely to harbor a Staphylococcus-Streptococcus-dominant microbial community in their nose. The richness and diversity of the microbiome was significantly higher in the exposure group than in the control group. In the exposure group, the bacterial genera Rhodocista, Azospirillum, Massilia, Herbaspirillum, Aquabacterium, and Pseudomonas were enriched, whereas Corynebacterium and Ralstonia were depleted. Food insecurity due to Hurricane Maria was associated with an increase in Pseudomonas in the infant nasal microbiome. Conclusion: Infants who were exposed to Hurricane Maria during gestation had an altered nasal microbiome, with a higher prevalence of environmental bacteria. More research is needed to evaluate the long-term impacts of extreme weather events occurring in the prenatal stage on a child's nasal microbiome and respiratory health.

12.
Metab Eng ; 73: 182-191, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35934177

RESUMO

Phenolic acids and tanshinones are main bioactive compounds produced in Salvia miltiorrhiza widely used in treatment of cardiovascular diseases, which could be promoted by abscisic acid elicitation. However, the regulation mechanism remained to be elucidated. An ABA-inducible IIa WRKY transcription factor (TF) named SmWRKY34 exhibiting high homology with AtWRKY40 was isolated. SmWRKY34 exhibited a negative role on phenolic acids and tanshinones by directly regulating SmRAS and SmGGPPS. Moreover, ABA-responsive bZIP TF member named SmbZIP3 expressing significantly in SmWRKY34 transcriptome was screened. SmWRKY34 showed a negative regulatory role on SmbZIP3. SmbZIP3 acted as a positive regulator in the biosynthesis of phenolic acids and tanshinones by targeting SmTAT and two tanshinone-promoting TFs SmERF128 and SmMYB9b. Taken together, we identify a new module WRKY34-bZIP3 involved in ABA signaling that manipulates phenolic acid and tanshinone accumulation, shedding new insights in metabolic engineering application in S. miltiorrhiza.


Assuntos
Salvia miltiorrhiza , Abietanos , Regulação da Expressão Gênica de Plantas , Hidroxibenzoatos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-35343883

RESUMO

Patulin is one of the most significant food safety problems in fruit and derived products. The reduction of patulin contamination in food processing has always been the focus of research. In this study, nine yeast strains were applied for the brewing of apple cider and the fate of patulin was determined. In this process, the patulin contamination can be decreased by adsorption onto and degradation of yeast cells in the main fermentation (20.8-49.1%), as well as the adsorption removal during clarification (18.7-58%), inverted cans (21.3-31.4%) and aging (1.0-5.8%). Saccharomyces cerevisiae (1027) was selected to reveal the elimination mechanism of patulin in main fermentation. The decrease of patulin content was mainly due to degradation and the intracellular enzymes played a more important role than extracellular ones. In addition, the synthesis of enzymes was related to the induction of patulin. Furthermore, the degradation product of patulin in the main fermentation was identified as E-ascladiol, which is less toxic than patulin. Based on the representative strain of S. cerevisiae 1027, patulin contamination can be effectively eliminated during apple cider brewing. This study provides a new insight into eliminating patulin contamination in the brewing of apple cider.


Assuntos
Malus , Patulina , Bebidas Alcoólicas , Contaminação de Alimentos/análise , Patulina/análise , Saccharomyces cerevisiae/metabolismo
14.
Cell Host Microbe ; 30(1): 110-123.e5, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932985

RESUMO

Rotavirus vaccines (RVVs) have substantially diminished mortality from severe rotavirus (RV) gastroenteritis but are significantly less effective in low- and middle-income countries (LMICs), limiting their life-saving potential. The etiology of RVV's diminished effectiveness remains incompletely understood, but the enteric microbiota has been implicated in modulating immunity to RVVs. Here, we analyze the enteric microbiota in a longitudinal cohort of 122 Ghanaian infants, evaluated over the course of 3 Rotarix vaccinations between 6 and 15 weeks of age, to assess whether bacterial and viral populations are distinct between non-seroconverted and seroconverted infants. We identify bacterial taxa including Streptococcus and a poorly classified taxon in Enterobacteriaceae as positively correlating with seroconversion. In contrast, both bacteriophage diversity and detection of Enterovirus B and multiple novel cosaviruses are negatively associated with RVV seroconversion. These findings suggest that virome-RVV interference is an underappreciated cause of poor vaccine performance in LMICs.


Assuntos
Intestino Delgado/virologia , Infecções por Rotavirus/imunologia , Rotavirus/fisiologia , Viroma/fisiologia , Bactérias/classificação , Bacteriófagos , Estudos de Coortes , Coinfecção , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Gana , Humanos , Imunização , Lactente , Masculino , Metagenoma , Infecções por Rotavirus/virologia , Vacinas contra Rotavirus , Soroconversão , Vacinação , Vacinas Atenuadas
15.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34462359

RESUMO

Oral infection with Toxoplasma gondii results in dysbiosis and enteritis, both of which revert to normal during chronic infection. However, whether infection leaves a lasting impact on mucosal responses remains uncertain. Here we examined the effect of the chemical irritant dextran sodium sulfate (DSS) on intestinal damage and wound healing in chronically infected mice. Our findings indicate that prior infection with T. gondii exacerbates damage to the colon caused by DSS and impairs wound healing by suppressing stem cell regeneration of the epithelium. Enhanced tissue damage was attributable to inflammatory monocytes that emerge preactivated from bone marrow, migrate to the intestine, and release inflammatory mediators, including nitric oxide. Tissue damage was reversed by neutralization of inflammatory monocytes or nitric oxide, revealing a causal mechanism for tissue damage. Our findings suggest that chronic infection with T. gondii enhances monocyte activation to increase inflammation associated with a secondary environmental insult.


Assuntos
Colite/complicações , Toxoplasmose/complicações , Animais , Doença Crônica , Suscetibilidade a Doenças , Microbioma Gastrointestinal , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/patologia , Regeneração , Células-Tronco/patologia
16.
Food Chem Toxicol ; 153: 112289, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34029669

RESUMO

Fritillaria thunbergii Miq. (Zhe beimu) ranked as oldest known homeopathic traditional folk medicine in China. The bulbs are medicinally important curing cough, inflammation, gastric ulcers, hypertension, diarrhea, and bronchitis. The aim of this review is to enlighten the deeper knowledge about F. thunbergii giving a comprehensive overview on its traditional uses, phytochemistry and pharmacology for future investigation of plant-based drugs and therapeutic applications. Total 48 medicinally important species of Fritillaria were described; total 122 compounds have been identified as results only 72 chemical constituents were described with proper chemical and biological details. F. thunbergii and its bulbs mainly constitute alkaloids, essential oils, diterpenoids, carbohydrates, sterols, amino acids, nucleosides, fatty acids, and lignans. The pharmacological studies demonstrate that F. thunbergii and its bulbs displays a wide range of bioactivities e.g., anti-inflammatory, anticancer, antitussive, expectorant, anti-ulcer, antimicrobial, antioxidant, anti-thyroid, regulation of blood rheology, anti-diarrhea, neuroprotection, and analgesic effects. Although promising reports on the various chemical bioactive constituents and biological properties of F. thunbergii have been published, very few reviews are related specifically to the traditional uses, phytochemistry and pharmacological applications. Further, various other studies on these plants should deserve our more attention for future investigation for drug development and its therapeutic applications.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Fritillaria/química , Animais , Medicamentos de Ervas Chinesas/química , Etnofarmacologia , Humanos , Raízes de Plantas/química
17.
Acta Neuropathol Commun ; 9(1): 40, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33691793

RESUMO

The influence of the gut microbiota on traumatic brain injury (TBI) is presently unknown. This knowledge gap is of paramount clinical significance as TBI patients are highly susceptible to alterations in the gut microbiota by antibiotic exposure. Antibiotic-induced gut microbial dysbiosis established prior to TBI significantly worsened neuronal loss and reduced microglia activation in the injured hippocampus with concomitant changes in fear memory response. Importantly, antibiotic exposure for 1 week after TBI reduced cortical infiltration of Ly6Chigh monocytes, increased microglial pro-inflammatory markers, and decreased T lymphocyte infiltration, which persisted through 1 month post-injury. Moreover, microbial dysbiosis was associated with reduced neurogenesis in the dentate gyrus 1 week after TBI. By 3 months after injury (11 weeks after discontinuation of the antibiotics), we observed increased microglial proliferation, increased hippocampal neuronal loss, and modulation of fear memory response. These data demonstrate that antibiotic-induced gut microbial dysbiosis after TBI impacts neuroinflammation, neurogenesis, and fear memory and implicate gut microbial modulation as a potential therapeutic intervention for TBI.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Disbiose/complicações , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Imunidade , Neurogênese , Animais , Bactérias/genética , Modelos Animais de Doenças , Disbiose/microbiologia , Disbiose/fisiopatologia , Hipocampo/patologia , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Microglia
18.
Ann Allergy Asthma Immunol ; 125(6): 652-657.e3, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32931909

RESUMO

BACKGROUND: Sex differences exist in asthma susceptibility and severity. Accumulating evidence has linked airway microbiome dysbiosis to asthma, and airway microbial communities have been found to differ by sex. However, whether sex modifies the link between airway microbiome and asthma has not been investigated. OBJECTIVE: To evaluate sex effects in the association between airway microbiome and asthma. METHODS: We analyzed induced sputum samples from 47 subjects (n = 23 patients with asthma and n = 24 normal controls) using 16S ribosomal RNA gene sequencing methods. The bacterial composition was analyzed for sex differences. Bacterial associations with asthma were assessed for each sex at the core taxa and genus levels. RESULTS: The microbiome in induced sputum differed in women vs men at the community level. A total of 5 core bacterial taxa were found in all samples. No sex-specific core taxa were detected. The most abundant core taxon, Streptococcus salivarius, was significantly enriched in women than in men (P = .02). Within each sex, individuals with relatively lower abundance of S salivarius were more likely to have asthma (P = .006). For both sexes, increased Lactobacillus species were found in sputum samples of patients with patients compared with normal controls (adjusted P = .01). Haemophilus species were associated with asthma in men and not in women. CONCLUSION: The airway microbiome differed by sex, and sex effects exist in the association of airway microbial markers and asthma. Future airway microbiome studies may yield better resolution if the context of specific sex is considered. The airway microbiome is a potential mechanism driving sex differences in asthma.


Assuntos
Asma/epidemiologia , Haemophilus/fisiologia , Microbiota/genética , RNA Ribossômico 16S/genética , Sistema Respiratório/microbiologia , Fatores Sexuais , Streptococcus salivarius/fisiologia , Adulto , Asma/microbiologia , Feminino , Humanos , Lactobacillus/genética , Masculino , Pessoa de Meia-Idade , Caracteres Sexuais , Escarro/microbiologia , Estados Unidos/epidemiologia
19.
Pediatr Res ; 88(6): 917-924, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32172280

RESUMO

BACKGROUND: Hurricane Maria struck Puerto Rico on 20 September 2017 causing catastrophic devastation. Prolonged shortage of food had been a substantial challenge to the residents after Maria. Experiencing food insecurity in utero has been associated with negative health outcomes later in life. We aim to examine whether there is any alteration in the infant gut microbiome that is associated with prenatal food insecurity. METHODS: We established a cohort of infants aged 2-6 months who were exposed in utero to Hurricane Maria near San Juan, Puerto Rico and examined the gut microbiota (n = 29) using 16S ribosomal RNA gene sequencing. RESULTS: Among the enrolled infants, 30% of their mothers experienced "post-Maria poor access to food" for at least 1 month during pregnancy. The relative abundance of gut Veillonella spp. is significantly decreased among infants who experienced prenatal food insecurity, compared to those who did not (adjusted p = 0.025). There is no significant difference observed by prenatal food insecurity at the microbial community level in this cohort. CONCLUSIONS: Our finding indicated that infants who experienced prenatal food insecurity post hurricane harbor microbial alternations of specific bacterial taxa, which may further influence the microbial maturation and place the individual at a high-risk health trajectory. IMPACT: We identified that in utero exposure to food insecurity post Hurricane Maria is associated with decreased abundance of Veillonella in the infant gut. Our findings indicated that infants who experienced prenatal food insecurity post hurricane may harbor alterations of specific bacterial taxa in their gut microbiota. This study showed the association between prenatal adverse exposure and alterations of gut microbiome early in life in the context of an extreme event. This study provided insights into the mechanisms underlying prenatal adverse exposure and increased disease risks later in life. Our findings will potentially raise awareness of the negative impact of extreme climate events on the unborn.


Assuntos
Tempestades Ciclônicas , Insegurança Alimentar , Microbioma Gastrointestinal , Microbiota , Efeitos Tardios da Exposição Pré-Natal , Veillonella/metabolismo , Clima , Feminino , Humanos , Lactente , Recém-Nascido , Mães , Reação em Cadeia da Polimerase , Gravidez , Porto Rico , RNA Ribossômico 16S/metabolismo , Resultado do Tratamento
20.
Appl Opt ; 58(18): 5067-5073, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31503827

RESUMO

A new interferometric particle imaging (IPI) simulator is developed based on Fourier optics. With this model, the optical field distribution of any kind of IPI setup at any location, such as on the focused and the defocused image planes, can be easily generated. In addition, the geometric center of a particle image and the image of the particle center on focused and defocused image planes can then be assessed in detail with the IPI simulator by the optical ray tracing method. The size effect of the defocused image is investigated, and the new expression of the calculated defocused image size is given, which can produce higher accuracy in particle locating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...