Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(4): 3593-3606, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36418774

RESUMO

BACKGROUND: The growth and yield of pepper (Capsicum annuum L.) is often affected by the critical salt stress. Salicylic acid (SA) can improve plants' stress tolerance by promoting growth and regulating ion absorption and transportation. METHODS AND RESULTS: To uncover the alleviated mechanism of salt stress by SA in pepper, we conducted morphological, physiological, cytological, and transcriptomic analyses under a single SA treatment and NaCl with and without SA pre-treatment for 9 days. Seedlings under NaCl treatment showed yellow shrunken leaves, this tatus were alleviated by NS treatment (NaCl with SA pre-treatment). Compared with plants under NaCl treatment, those in the NS treatment showed reduced lipid peroxidation, and significantly increased contents of chlorophyll and osmotic regulators (proline, soluble sugars). Treatment with SA balanced the Na+/K+ ratio. We conducted transcriptome sequencing and identified differentially expressed genes (DEGs) contributing to alleviation of salt stress by SA in pepper. Besides photosynthesis related genes, GO and KEGG analyses revealed that the DEGs were enriched in 'sequence-specific DNA binding', 'transcription regulator activity' and 'DNA binding transcription factor activity' by GO terms. And our results showed that TFs, such as MYB, bZIP, BBX, AP2/ERF, NAC, etc., probably make a great contribution in the alleviation of salt stress by SA. CONCLUSIONS: These results reveal that SA can improve plants' stress tolerance by balancing ion absorption, gene expression and transcriptional regulation, which provide new ideas and resources for subsequent research on the mechanism of salt tolerance in pepper.


Assuntos
Capsicum , Capsicum/genética , Transcriptoma/genética , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Tolerância ao Sal/genética , DNA/metabolismo , Estresse Fisiológico/genética
2.
BMC Plant Biol ; 21(1): 11, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407148

RESUMO

BACKGROUND: The NAC (NAM, ATAF1/ATAF2, and CUC2) transcription factors belong to a large family of plant-specific transcription factors in monocot and dicot species. These transcription factors regulate the expression of stress tolerance-related genes that protect plants from various abiotic stresses, including drought, salinity, and low temperatures. RESULTS: In this study, we identified the CaNAC46 transcription factor gene in Capsicum annuum. Its open reading frame was revealed to comprise 921 bp, encoding a protein consisting of 306 amino acids, with an isoelectric point of 6.96. A phylogenetic analysis indicated that CaNAC46 belongs to the ATAF subfamily. The expression of CaNAC46 was induced by heat, cold, high salt, drought, abscisic acid, salicylic acid, and methyl jasmonate treatments. Thus, CaNAC46 may be important for the resistance of dry pepper to abiotic stresses. A subcellular localization analysis confirmed that CaNAC46 is localized in the nucleus. The overexpression of CaNAC46 improved the tolerance of transgenic Arabidopsis thaliana plants to drought and salt stresses. The CaNAC46-overexpressing lines had longer roots and more lateral roots than wild-type lines under prolonged drought and high salt stress conditions. Additionally, CaNAC46 affected the accumulation of reactive oxygen species (ROS). Moreover, CaNAC46 promoted the expression of SOD, POD, RD29B, RD20, LDB18, ABI, IAA4, and P5CS. The malondialdehyde contents were higher in TRV2-CaNAC46 lines than in wild-type plants in response to drought and salt stresses. Furthermore, the expression levels of stress-responsive genes, such as ABA2, P5CS, DREB, RD22, CAT, and POD, were down-regulated in TRV2-CaNAC46 plants. CONCLUSIONS: Under saline and drought conditions, CaNAC46 is a positive regulator that activates ROS-scavenging enzymes and enhances root formation. The results of our study indicate CaNAC46 is a transcriptional regulator responsible for salinity and drought tolerance and suggest the abiotic stress-related gene regulatory mechanisms controlling this NAC transcription factor are conserved between A. thaliana and pepper.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Capsicum/genética , Secas , Estresse Salino/genética , Estresse Fisiológico/genética , Fatores de Transcrição , Regulação da Expressão Gênica de Plantas , Filogenia , Plantas Geneticamente Modificadas/genética , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA