Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 29(16): 2375-2382, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31235261

RESUMO

Mcl-1 is an anti-apoptotic protein overexpressed in hematological malignancies and several human solid tumors. Small molecule inhibition of Mcl-1 would offer an effective therapy to Mcl-1 mediated resistance. Subsequently, it has been the target of extensive research in the pharmaceutical industry. The discovery of a novel class of Mcl-1 small molecule inhibitors is described beginning with a simple biaryl sulfonamide hit derived from a high through put screen. A medicinal chemistry effort aided by SBDD generated compounds capable of disrupting the Mcl-1/Bid protein-protein interaction in vitro. The crystal structure of the Mcl-1 bound ligand represents a unique binding mode to the BH3 binding pocket where binding affinity is achieved, in part, through a sulfonamide oxygen/Arg263 interaction. The work highlights the some of the key challenges in designing effective protein-protein inhibitors for the Bcl-2 class of proteins.


Assuntos
Descoberta de Drogas , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
2.
J Med Chem ; 62(14): 6575-6596, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31199148

RESUMO

Mutations at the arginine residue (R132) in isocitrate dehydrogenase 1 (IDH1) are frequently identified in various human cancers. Inhibition of mutant IDH1 (mIDH1) with small molecules has been clinically validated as a promising therapeutic treatment for acute myeloid leukemia and multiple solid tumors. Herein, we report the discovery and optimization of a series of quinolinones to provide potent and orally bioavailable mIDH1 inhibitors with selectivity over wild-type IDH1. The X-ray structure of an early lead 24 in complex with mIDH1-R132H shows that the inhibitor unexpectedly binds to an allosteric site. Efforts to improve the in vitro and in vivo absorption, distribution, metabolism, and excretion (ADME) properties of 24 yielded a preclinical candidate 63. The detailed preclinical ADME and pharmacology studies of 63 support further development of quinolinone-based mIDH1 inhibitors as therapeutic agents in human trials.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Isocitrato Desidrogenase/antagonistas & inibidores , Quinolonas/química , Quinolonas/farmacologia , Sítio Alostérico/efeitos dos fármacos , Animais , Disponibilidade Biológica , Linhagem Celular Tumoral , Cristalografia por Raios X , Cães , Descoberta de Drogas , Inibidores Enzimáticos/farmacocinética , Feminino , Humanos , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Mutação Puntual , Quinolonas/farmacocinética
3.
Nucleic Acids Res ; 43(19): 9350-61, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26433227

RESUMO

Antisense oligonucleotides (ASOs) are known to trigger mRNA degradation in the nucleus via an RNase H-dependent mechanism. We have now identified a putative cytoplasmic mechanism through which ASO gapmers silence their targets when transfected or delivered gymnotically (i.e. in the absence of any transfection reagent). We have shown that the ASO gapmers can interact with the Ago-2 PAZ domain and can localize into GW-182 mRNA-degradation bodies (GW-bodies). The degradation products of the targeted mRNA, however, are not generated by Ago-2-directed cleavage. The apparent identification of a cytoplasmic pathway complements the previously known nuclear activity of ASOs and concurrently suggests that nuclear localization is not an absolute requirement for gene silencing.


Assuntos
Citoplasma/metabolismo , Inativação Gênica , Oligonucleotídeos Antissenso , Proteínas Argonautas/metabolismo , Linhagem Celular , Citoplasma/química , Técnicas de Transferência de Genes , Oligonucleotídeos Antissenso/análise , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Transfecção
4.
Anal Biochem ; 386(2): 194-216, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19133223

RESUMO

To explore the variability in biosensor studies, 150 participants from 20 countries were given the same protein samples and asked to determine kinetic rate constants for the interaction. We chose a protein system that was amenable to analysis using different biosensor platforms as well as by users of different expertise levels. The two proteins (a 50-kDa Fab and a 60-kDa glutathione S-transferase [GST] antigen) form a relatively high-affinity complex, so participants needed to optimize several experimental parameters, including ligand immobilization and regeneration conditions as well as analyte concentrations and injection/dissociation times. Although most participants collected binding responses that could be fit to yield kinetic parameters, the quality of a few data sets could have been improved by optimizing the assay design. Once these outliers were removed, the average reported affinity across the remaining panel of participants was 620 pM with a standard deviation of 980 pM. These results demonstrate that when this biosensor assay was designed and executed appropriately, the reported rate constants were consistent, and independent of which protein was immobilized and which biosensor was used.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas/análise , Anticorpos Catalíticos/análise , Benchmarking , Sítios de Ligação , Técnicas Biossensoriais/estatística & dados numéricos , Glutationa Transferase/análise , Cinética , Ligantes
5.
Proc Natl Acad Sci U S A ; 106(6): 1737-42, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19164768

RESUMO

As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity.


Assuntos
Antibacterianos/química , Carbono-Nitrogênio Ligases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Antibacterianos/farmacologia , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/enzimologia , Moraxella catarrhalis/efeitos dos fármacos , Moraxella catarrhalis/enzimologia , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Bibliotecas de Moléculas Pequenas
6.
J Virol ; 77(13): 7575-81, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12805457

RESUMO

The virus-encoded nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) is an RNA-dependent RNA polymerase and is absolutely required for replication of the virus. NS5B exhibits significant differences from cellular polymerases and therefore has become an attractive target for anti-HCV therapy. Using a high-throughput screen, we discovered a novel NS5B inhibitor that binds to the enzyme noncompetitively with respect to nucleotide substrates. Here we report the crystal structure of NS5B complexed with this small molecule inhibitor. Unexpectedly, the inhibitor is bound within a narrow cleft on the protein's surface in the "thumb" domain, about 30 A from the enzyme's catalytic center. The interaction between this inhibitor and NS5B occurs without dramatic changes to the structure of the protein, and sequence analysis suggests that the binding site is conserved across known HCV genotypes. Possible mechanisms of inhibition include perturbation of protein dynamics, interference with RNA binding, and disruption of enzyme oligomerization.


Assuntos
Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...