Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 12(1): 170, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419880

RESUMO

White organic light-emitting diodes (WOLEDs) is a new generation of lighting technology and has stimulated wide-ranging studies. Despite the advantage of simple device structure, single-emitting-layer WOLEDs (SEL-WOLEDs) still face the challenges of difficult material screening and fine energy level regulation. Herein, we report efficient SEL-WOLEDs with a sky-blue emitting cerium(III) complex Ce-TBO2Et and an orange-red emitting europium(II) complex Eu(Tp2Et)2 as the emitters, showing a maximum external quantum efficiency of 15.9% and Commission Internationale de l'Eclairage coordinates of (0.33, 0.39) at various luminances. Most importantly, the electroluminescence mechanism of direct hole capture and hindered energy transfer between the two emitters facilitate a manageable weight doping concentration of 5% for Eu(Tp2Et)2, avoiding the low concentration (<1%) of the low-energy emitter in typical SEL-WOLEDs. Our results indicate that d-f transition emitters may circumvent fine energy level regulation and provide development potential for SEL-WOLEDs.

2.
Microsyst Nanoeng ; 9: 87, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440869

RESUMO

Biomimetic mechanosensors have profound implications for various areas, including health care, prosthetics, human‒machine interfaces, and robotics. As one of the most important parameters, the sensitivity of mechanosensors is intrinsically determined by the detection resolution to mechanical force. In this manuscript, we expand the force detection resolution of current biomimetic mechanosensors from the micronewton to nanonewton scale. We develop a nanocrack-based electronic whisker-type mechanosensor that has a detection resolution of 72.2 nN. We achieve the perception of subtle mechanical stimuli, such as tiny objects and airflow, and the recognition of surface morphology down to a 30 nm height, which is the finest resolution ever reported in biomimetic mechanosensors. More importantly, we explore the use of this mechanosensor in wearable devices for sensing gravity field orientation with respect to the body, which has not been previously achieved by these types of sensors. We develop a wearable smart system for sensing the body's posture and movements, which can be used for remote monitoring of falls in elderly people. In summary, the proposed device offers great advantages for not only improving sensing ability but also expanding functions and thus can be used in many fields not currently served by mechanosensors.

3.
RSC Adv ; 13(20): 13405-13411, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37143918

RESUMO

The stretching breakup of a conical liquid bridge is the core process of micro-dispensing. To precisely control the droplet loading and improve the dispensing resolution, a detailed study of bridge breakup with a moving contact line is required. A conical liquid bridge is established by an electric field and stretching breakup is investigated here. The effect of contact line state is investigated by examining the pressure at the symmetry axis. Compared to the pinned case, the moving contact line causes a shift of the pressure maximum from the bridge neck to top, and it facilitates the evacuation of the bridge top. For the moving case, factors affecting the contact line motion are then considered. The results show that the increase of the stretching velocity U and the decrease of the initial top radius R top accelerate the contact line motion. And the amount of contact line movement is basically constant. To analyze the influence of the moving contact line on bridge breakup, neck evolution is tracked under different U. An increase of U decreases the breakup time and increases the breakup position. Based on the breakup position and the remnant radius, the influences of U and R top on remnant volume V d are examined. It is found that V d decreases with an increase of U and increases with an increase of R top. Accordingly, different sizes of remnant volume can be obtained by adjusting U and R top. This is helpful for the optimization of liquid loading for transfer printing.

4.
Microbiol Spectr ; 11(3): e0032623, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37022262

RESUMO

Epstein-Barr virus (EBV) infects host cells and establishes a latent infection that requires evasion of host innate immunity. A variety of EBV-encoded proteins that manipulate the innate immune system have been reported, but whether other EBV proteins participate in this process is unclear. EBV-encoded envelope glycoprotein gp110 is a late protein involved in virus entry into target cells and enhancement of infectivity. Here, we reported that gp110 inhibits RIG-I-like receptor pathway-mediated promoter activity of interferon-ß (IFN-ß) as well as the transcription of downstream antiviral genes to promote viral proliferation. Mechanistically, gp110 interacts with the inhibitor of NF-κB kinase (IKKi) and restrains its K63-linked polyubiquitination, leading to attenuation of IKKi-mediated activation of NF-κB and repression of the phosphorylation and nuclear translocation of p65. Additionally, gp110 interacts with an important regulator of the Wnt signaling pathway, ß-catenin, and induces its K48-linked polyubiquitination degradation via the proteasome system, resulting in the suppression of ß-catenin-mediated IFN-ß production. Taken together, these results suggest that gp110 is a negative regulator of antiviral immunity, revealing a novel mechanism of EBV immune evasion during lytic infection. IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous pathogen that infects almost all human beings, and the persistence of EBV in the host is largely due to immune escape mediated by its encoded products. Thus, elucidation of EBV's immune escape mechanisms will provide a new direction for the design of novel antiviral strategies and vaccine development. Here, we report that EBV-encoded gp110 serves as a novel viral immune evasion factor, which inhibits RIG-I-like receptor pathway-mediated interferon-ß (IFN-ß) production. Furthermore, we found that gp110 targeted two key proteins, inhibitor of NF-κB kinase (IKKi) and ß-catenin, which mediate antiviral activity and the production of IFN-ß. gp110 inhibited K63-linked polyubiquitination of IKKi and induced ß-catenin degradation via the proteasome, resulting in decreased IFN-ß production. In summary, our data provide new insights into the EBV-mediated immune evasion surveillance strategy.


Assuntos
Infecções por Vírus Epstein-Barr , NF-kappa B , Humanos , NF-kappa B/metabolismo , Herpesvirus Humano 4/genética , Complexo de Endopeptidases do Proteassoma , beta Catenina , Interferon beta , Antivirais , Glicoproteínas
5.
J Biol Chem ; 299(5): 104613, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931391

RESUMO

Epstein-Barr virus (EBV) is a member of the lymphotropic virus family and is highly correlated with some human malignant tumors. It has been reported that envelope glycoprotein 110 (gp110) plays an essential role in viral fusion, DNA replication, and nucleocapsid assembly of EBV. However, it has not been established whether gp110 is involved in regulating the host's innate immunity. In this study, we found that gp110 inhibits tumor necrosis factor α-mediated NF- κB promoter activity and the downstream production of NF- κB-regulated cytokines under physiological conditions. Using dual-luciferase reporter assays, we showed that gp110 might impede the NF-κB promoter activation downstream of NF-κB transactivational subunit p65. Subsequently, we used coimmunoprecipitation assays to demonstrate that gp110 interacts with p65 during EBV lytic infection, and that the C-terminal cytoplasmic region of gp110 is the key interaction domain with p65. Furthermore, we determined that gp110 can bind to the N-terminal Rel homologous and C-terminal domains of p65. Alternatively, gp110 might not disturb the association of p65 with nontransactivational subunit p50, but we showed it restrains activational phosphorylation (at Ser536) and nuclear translocation of p65, which we also found to be executed by the C-terminal cytoplasmic region of gp110. Altogether, these data suggest that the surface protein gp110 may be a vital component for EBV to antagonize the host's innate immune response, which is also helpful for revealing the infectivity and pathogenesis of EBV.


Assuntos
Infecções por Vírus Epstein-Barr , NF-kappa B , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Herpesvirus Humano 4/metabolismo , Infecções por Vírus Epstein-Barr/genética , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Transdução de Sinais , Transporte Proteico
6.
Inorg Chem ; 61(35): 14164-14172, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35994595

RESUMO

Luminescent cerium(III) complexes based on the d-f transition have characteristics of broad emission spectra, tunable emission colors, and short excited state lifetimes, showing potential applications in display, lighting, and other fields. Thus it is important to construct luminescent Ce(III) complexes with high photoluminescence efficiency and good stability. In this work, five Ce(III) complexes with dihydrobis(pyrazolyl)borate or diphenylbis(pyrazolyl)borate ligands, where pyrazolyl stands for pyrazolyl, 3-methylpyrazolyl, or 3,5-dimethylpyrazolyl, were designed and synthesized, showing emission colors from deep blue to yellow with a maximum wavelength in the range of 390-560 nm, short excited state lifetimes of 30-80 ns, and photoluminescence quantum yields exceeding 75% in solid powder. By comparing these complexes, it is found that higher photoluminescence efficiency and better thermal/air stability could be achieved in the complexes with dihydrobis(pyrazolyl)borate ligands.

7.
J Phys Chem Lett ; 13(12): 2686-2694, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35302781

RESUMO

Organic light-emitting diodes (OLEDs) are considered as next-generation displays and lighting technologies. During the past three decades, various luminescent materials such as fluorescence, phosphorescence, and thermally activated delayed fluorescence materials have been subsequently investigated as emitters. To date, blue OLEDs are still the bottleneck as compared to red and green ones because of the lack of efficient emitters with simultaneous high exciton utilization efficiency and long-term stability. Recently, d-f transition rare earth complexes have been reported as new emitters in OLEDs with potential high efficiency and stability. In this Perspective, we present a brief introduction to OLEDs and an overview of the previous electroluminescence study on d-f transition rare earth complexes. This is followed by our recent developments in cerium(III) complex- and europium(II) complex-based OLEDs. We finally discuss the challenges and opportunities for OLED study based on d-f transition rare earth complexes.

8.
Microbiol Spectr ; 10(1): e0188321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196784

RESUMO

Virus infection triggers intricate signal cascade reactions to activate the host innate immunity, which leads to the production of type I interferon (IFN-I). Herpes simplex virus 1 (HSV-1), a human-restricted pathogen, is capable of encoding over 80 viral proteins, and several of them are involved in immune evasion to resist the host antiviral response through the IFN-I signaling pathway. Here, we determined that HSV-1 UL31, which is associated with nuclear matrix and is essential for the formation of viral nuclear egress complex, could inhibit retinoic acid-inducible gene I (RIG-I)-like receptor pathway-mediated interferon beta (IFN-ß)-luciferase (Luc) and (PRDIII-I)4-Luc (an expression plasmid of IFN-ß positive regulatory elements III and I) promoter activation, as well as the mRNA transcription of IFN-ß and downstream interferon-stimulated genes (ISGs), such as ISG15, ISG54, ISG56, etc., to promote viral infection. UL31 was shown to restrain IFN-ß activation at the interferon regulatory factor 3 (IRF3)/IRF7 level. Mechanically, UL31 was demonstrated to interact with TANK binding kinase 1 (TBK1), inducible IκB kinase (IKKi), and IRF3 to impede the formation of the IKKi-IRF3 complex but not the formation of the IRF7-related complex. UL31 could constrain the dimerization and nuclear translocation of IRF3. Although UL31 was associated with the CREB binding protein (CBP)/p300 coactivators, it could not efficiently hamper the formation of the CBP/p300-IRF3 complex. In addition, UL31 could facilitate the degradation of IKKi and IRF3 by mediating their K48-linked polyubiquitination. Taken together, these results illustrated that UL31 was able to suppress IFN-ß activity by inhibiting the activation of IKKi and IRF3, which may contribute to the knowledge of a new immune evasion mechanism during HSV-1 infection. IMPORTANCE The innate immune system is the first line of host defense against the invasion of pathogens. Among its mechanisms, IFN-I is an essential cytokine in the antiviral response, which can help the host eliminate a virus. HSV-1 is a double-stranded DNA virus that can cause herpes and establish a lifelong latent infection, due to its possession of multiple mechanisms to escape host innate immunity. In this study, we illustrate for the first time that the HSV-1-encoded UL31 protein has a negative regulatory effect on IFN-ß production by blocking the dimerization and nuclear translocation of IRF3, as well as promoting the K48-linked polyubiquitination and degradation of both IKKi and IRF3. This study may be helpful for fully understanding the pathogenesis of HSV-1.


Assuntos
Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Interferon beta/genética , Interferon beta/imunologia , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Animais , Chlorocebus aethiops , Citocinas , Proteína DEAD-box 58 , Células HEK293 , Células HeLa , Herpes Simples , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon , Interferon Tipo I , Interferon beta/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases , Receptores Imunológicos , Transdução de Sinais , Células Vero , Proteínas Virais/metabolismo
9.
Inorg Chem ; 60(23): 18103-18111, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34779606

RESUMO

Compared with red and green organic light-emitting diodes (OLEDs), blue is the bottleneck that restricts the wide development of OLEDs from being the next-generation technology for displays and lighting. As a new type of emitter, a Ce(III) complex shows many satisfactory advantages, such as a short excited-state lifetime, 100% theoretical exciton utilization efficiency, and tunable emission color. Herein we synthesized three heteroleptic Ce(III) complexes Ce(TpMe2)2(dtfpz), Ce(TpMe2)2(dmpz), and Ce(TpMe2)2(dppz) with the hydrotris(3,5-dimethylpyrazolyl)borate (TpMe2) main ligand and different substituted pyrazole ancillary ligands, namely, 3,5-di(trifluomethyl)pyrazolyl (dtfpz), 3,5-dimethylpyrazolyl (dmpz), and 3,5-diphenylpyrazolyl (dppz), and studied their structures and luminescence properties. All the Ce(III) complexes exhibited a near-unity photoluminescence quantum yield both in solution and as a powder with maximum emission wavelengths in the range of 450-486 nm. The OLED employing Ce(TpMe2)2(dppz) as the emitter showed the best performance, including a turn-on voltage, maximum luminance, and external quantum efficiency of 3.2 V, 29 200 cd m-2, and 12.5%, respectively.

10.
Natl Sci Rev ; 8(2): nwaa193, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34691576

RESUMO

In the field of RGB diodes, development of a blue organic light-emitting diode (OLED) is a challenge because of the lack of an emitter which simultaneously has a short excited state lifetime and a high theoretical external quantum efficiency (EQE). We demonstrate herein a blue emissive rare earth cerium(III) complex Ce-2 showing a high photoluminescence quantum yield of 95% and a short excited state lifetime of 52.0 ns in doped film, which is considerably faster than that achieved in typical efficient phosphorescence or thermally activated delayed fluorescence emitters (typical lifetimes >1 µs). The corresponding OLED shows a maximum EQE up to 20.8% and a still high EQE of 18.2% at 1000 cd m-2, as well as an operation lifetime 70 times longer than that of a classic phosphorescence OLED. The excellent performance indicates that cerium(III) complex could be a candidate for efficient and stable blue OLEDs because of its spin- and parity-allowed d-f transition from the Ce3+ ion.

11.
ACS Appl Mater Interfaces ; 13(38): 45686-45695, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34529401

RESUMO

Organic light-emitting diodes (OLEDs) have had commercial success in displays and lighting. Compared to red and green OLEDs, blue OLEDs are still the bottleneck because the high-energy and long-lived triplet exciton in traditional blue OLEDs causes the short operational lifetime of the device. As a new type emitter, lanthanide complexes with a 5d-4f transition could have short excited-state lifetimes on the order of nanoseconds. To achieve a high-efficiency 5d-4f transition, we systematically tuned the steric and electronic effects of tripodal tris(pyrazolyl)borate ligands and drew a full picture of their Ce(III) complexes. Intriguingly, all of these complexes show bright blue emission with high photoluminescence quantum yields exceeding 95% and short decay lifetimes of 35-73 ns both in the solid powder and in dichloromethane solutions. Using the Ce(III) complex emitter, we show a blue OLED with a maximum external quantum efficiency of 14.1% and a maximum luminance of 33,160 cd m-2, and the specific electroluminescence mechanism of direct exciton formation on the Ce(III) ion with a near-unity exciton utilization efficiency is also confirmed. The discovered photoluminescence and electroluminescence property-structure relationships may shed new light on the rational design of highly efficient lanthanide-based blue emitters and their optoelectronic devices such as OLEDs.

12.
Adv Mater ; 33(40): e2102246, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34396606

RESUMO

Quasi-2D (Q-2D) perovskites are promising materials applied in light-emitting diodes (LEDs) due to their high exciton binding energy and quantum confinement effects. However, Q-2D perovskites feature a multiphase structure with abundant grain boundaries and interfaces, leading to nonradiative loss during the energy-transfer process. Here, a more efficient energy transfer in Q-2D perovskites is achieved by manipulating the crystallization kinetics of different-n phases. A series of alkali-metal bromides is utilized to manipulate the nucleation and growth of Q-2D perovskites, which is likely associated with the Coulomb interaction between alkali-metal ions and the negatively charged PbBr6 4- frames. The incorporation of K+ is found to restrict the nucleation of high-n phases and allows the subsequent growth of low-n phases, contributing to a spatially more homogeneous distribution of different-n phases and promoted energy transfer. As a result, highly efficient green Q-2D perovskites LEDs with a champion EQE of 18.15% and a maximum brightness of 25 800 cd m-2 are achieved. The findings affirm a novel method to optimize the performance of Q-2D perovskite LEDs.

13.
Langmuir ; 37(7): 2334-2340, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33529533

RESUMO

In transfer printing, the loaded droplet on the probe has a significant influence on the dispensing resolution. A suitable loading approach for a high-viscous liquid is highly required. Herein, a novel electrostatic loading method is presented, in which the main aim is to control precisely the formation and breaking of a cone-shaped liquid bridge. An experimental device is developed. The influence of electrical and geometric parameters on the feature size of the liquid bridge is investigated in detail. In the formation of the liquid bridge, the increase of voltage or the decrease of the air gap can enhance the electric field intensity, thus reducing the formation period and increasing the initial cone tip diameter of the liquid cone. After the liquid bridge is formed, both the circuit current implying the liquid wetted area on the probe surface and the lifting velocity of the probe are utilized to further regulate the volume of the loaded droplet. Loaded droplets ranging from 60 to 600 pL are obtained via the method with a standard deviation of 4 to 30 pL. Moreover, a dot array is transferred with different loaded droplets. The minimum diameter of the printed dots is about 140 µm with a variation less than 5%. The advantages include the reduced risk of contamination, the droplet-size independent of the size of the probe, and the low cost of the device.

14.
Nat Commun ; 11(1): 5218, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060573

RESUMO

Divalent europium 5d-4f transition has aroused great attention in many fields, in a way of doping Eu2+ ions into inorganic solids. However, molecular Eu2+ complexes with 5d-4f transition are thought to be too air-unstable to explore their applications. In this work, we synthesized four Eu2+-containing azacryptates EuX2-Nn (X = Br, I, n = 4, 8) and systematically studied the photophysical properties in crystalline samples and solutions. Intriguingly, the EuX2-N8 complexes exhibit near-unity photoluminescence quantum yield, good air-/thermal-stability and mechanochromic property (X = I). Furthermore, we proved the application of Eu2+ complexes in organic light-emitting diodes (OLEDs) with high efficiency and luminance. The optimized device employing EuI2-N8 as emitter has the best performance as the maximum luminance, current efficiency, and external quantum efficiency up to 25470 cd m-2, 62.4 cd A-1, and 17.7%, respectively. Our work deepens the understanding of structure-property relationship in molecular Eu2+ complexes and could inspire further research on application in OLEDs.

15.
Light Sci Appl ; 9: 157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963769

RESUMO

Compared to red and green organic light-emitting diodes (OLEDs), blue OLEDs are still the bottleneck due to the lack of efficient emitters with simultaneous high exciton utilization efficiency (EUE) and short excited-state lifetime. Different from the fluorescence, phosphorescence, thermally activated delayed fluorescence (TADF), and organic radical materials traditionally used in OLEDs, we demonstrate herein a new type of emitter, cerium(III) complex Ce-1 with spin-allowed and parity-allowed d-f transition of the centre Ce3+ ion. The compound exhibits a high EUE up to 100% in OLEDs and a short excited-state lifetime of 42 ns, which is considerably faster than that achieved in efficient phosphorescence and TADF emitters. The optimized OLEDs show an average maximum external quantum efficiency (EQE) of 12.4% and Commission Internationale de L'Eclairage (CIE) coordinates of (0.146, 0.078).

16.
Angew Chem Int Ed Engl ; 59(43): 19011-19015, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32643262

RESUMO

Luminescent EuII complexes with a characteristic 5d-4f transition have potential applications in many fields. However, their instability in ambient conditions impedes further exploration and application. Herein, we report two new EuII complexes, bis[hydrotris(3-trifluoromethylpyrazolyl)borate]europium(II) (Eu-1) and bis[hydrotris(3-methylpyrazolyl)borate]europium(II) (Eu-2). Intriguingly, the blue emissive Eu-1 showed high air stability arising from fluorine protection and close molecular packing, as maintaining a photoluminescence quantum yield (PLQY) of 91 % (initial 96 %) upon exposure to air over 2200 hours. While the orange emissive Eu-2 showed a maximum luminance of 30620 cd m-2 , and a maximum external quantum efficiency (EQE) of 6.5 %, corresponding to an exciton utilization efficiency around 100 % in organic light-emitting diodes (OLEDs). These results could inspire further research on stable and efficient EuII complexes and their application in OLEDs.

17.
Angew Chem Int Ed Engl ; 59(21): 8210-8217, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31985121

RESUMO

As a kind of photoluminescent material, CuI complexes have many advantages such as adjustable emission, variable structures, and low cost, attracting attention in many fields. In this work, two novel two-coordinate CuI -N-heterocyclic carbene complexes were synthesized, and they exhibit unique dual emission properties, fluorescence and phosphorescence. The crystal structure, packing mode, and photophysical properties under different conditions were systematically studied, proving the emissive mechanism to be the locally excited state of the carbazole group. Based on this mechanism, ultralong room-temperature phosphorescence (RTP) with a lifetime of 140 ms is achieved by selective deuteration of the carbazole group. These results deepen the understanding of the luminescence mechanism and design strategy for two-coordinate CuI complexes, and prove their potential in applications as ultralong RTP materials.

18.
Microsyst Nanoeng ; 6: 80, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34567690

RESUMO

Transfer printing is an emerging assembly technique for flexible and stretchable electronics. Although a variety of transfer printing methods have been developed, transferring patterns with nanometer resolution remains challenging. We report a sacrificial layer-assisted nanoscale transfer printing method. A sacrificial layer is deposited on a donor substrate, and ink is prepared on and transferred with the sacrificial layer. Introducing the sacrificial layer into the transfer printing process eliminates the effect of the contact area on the energy release rate (ERR) and ensures that the ERR for the stamp/ink-sacrificial layer interface is greater than that for the sacrificial layer/donor interface even at a slow peel speed (5 mm s-1). Hence, large-area nanoscale patterns can be successfully transferred with a yield of 100%, such as Au nanoline arrays (100 nm thick, 4 mm long and 47 nm wide) fabricated by photolithography techniques and PZT nanowires (10 mm long and 63 nm wide) fabricated by electrohydrodynamic jet printing, using only a blank stamp and without the assistance of any interfacial chemistries. Moreover, the presence of the sacrificial layer also enables the ink to move close to the mechanical neutral plane of the multilayer peel-off sheet, remarkably decreasing the bending stress and obviating cracks or fractures in the ink during transfer printing.

19.
J Hazard Mater ; 385: 121549, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31706750

RESUMO

Whether the heavy metals in solid biomass is activated or sequestrated during hydrothermal process (HTP) is still debated. Herein, the speciation of light and heavy metals during HTP of swine manure (SM) was investigated to reveal the interactions among these metal species and specific particulates. With increasing temperature, most of exchangeable species and that bound to carbonates were released to liquid phase via ion exchange and acid dissolution. Dissociation of Fe-Mn oxides rarely happened in spite of anoxic atmosphere formed during HTP. Substantial decomposition of lignocelluloses hardly caused significant liberation of fraction bound to organics. Instead, a part of fraction in liquid phase was re-captured by new oxygen-containing functional groups on solid product surface to form fraction bound to organics. Donpeacorite, butschliite and iwakiite were formed as primary minerals, resulting in increase of residual fraction of all metals except for K and Mg at 250 °C. In summary, Cu, Zn and Pb species evolution was affected by speciation of K, Ca, Mg, Fe and Mn significantly. Cu, Zn, Pb, Fe, Mn and Ca were sequestrated whereas K and Mg were activated with enhancing temperature during HTP in terms of their mobility factors.


Assuntos
Esterco , Metais Pesados/química , Material Particulado/química , Animais , Biomassa , Calefação , Temperatura Alta , Suínos
20.
Micromachines (Basel) ; 10(11)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661827

RESUMO

The dispensing resolution of high-viscosity liquid is essential for adhesive micro-bonding. In comparison with the injection technique, the transfer printing method appears to be promising. Herein, an analytical model was developed to describe the dynamic mechanism of squeezing-and-deforming a viscous droplet between plates in a transfer printing process: as the distance between plates decreases, the main constituents of contact force between the droplet and substrate can be divided into three stages: surface tension force, surface tension force and viscous force, and viscous force. According to the above analysis, the transfer printing method was built up to dispense high-viscosity adhesives, which replaced the geometric parameters, utilized the critical contact force to monitor the adhesive droplet status, and served as the criterion to trigger the liquid-bridge stretching stage. With a home-made device and a simple needle-stamp, the minimum dispensed amount of 0.05 nL (93.93 Pa·s) was achieved. Moreover, both the volume and the contact area of adhesive droplet on the substrate were approximately linear to the critical contact force. The revealed mechanism and proposed method have great potential in micro-assembly and other applications of viscous microfluidics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...