Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 696
Filtrar
1.
Int J Oral Sci ; 16(1): 34, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719817

RESUMO

Accurate segmentation of oral surgery-related tissues from cone beam computed tomography (CBCT) images can significantly accelerate treatment planning and improve surgical accuracy. In this paper, we propose a fully automated tissue segmentation system for dental implant surgery. Specifically, we propose an image preprocessing method based on data distribution histograms, which can adaptively process CBCT images with different parameters. Based on this, we use the bone segmentation network to obtain the segmentation results of alveolar bone, teeth, and maxillary sinus. We use the tooth and mandibular regions as the ROI regions of tooth segmentation and mandibular nerve tube segmentation to achieve the corresponding tasks. The tooth segmentation results can obtain the order information of the dentition. The corresponding experimental results show that our method can achieve higher segmentation accuracy and efficiency compared to existing methods. Its average Dice scores on the tooth, alveolar bone, maxillary sinus, and mandibular canal segmentation tasks were 96.5%, 95.4%, 93.6%, and 94.8%, respectively. These results demonstrate that it can accelerate the development of digital dentistry.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Processo Alveolar/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Inteligência Artificial , Seio Maxilar/diagnóstico por imagem , Seio Maxilar/cirurgia , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia , Dente/diagnóstico por imagem
2.
Microbiol Spectr ; : e0431223, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687068

RESUMO

Accurate species-level identification of Enterobacter cloacae complex (ECC) is crucial for related research. The classification of ECC is based on strain-to-strain phylogenetic congruence, as well as genomic features including average nucleotide identity (ANI) and digitalized DNA-DNA hybridization (dDDH). ANI and dDDH derived from whole-genome sequencing have emerged as a reliable metric for assessing genetic relatedness between genomes and are increasingly recognized as a standard for species delimitation. Up to now, there are two different classification methods for ECC. The first one categorizes E. hormaechei, a species within ECC, into five subspecies (E. hormaechei subsp. steigerwaltii, subsp. oharae, subsp. xiangfangensis, subsp. hoffmannii, and subsp. hormaechei). The second classifies E. hormaechei as three species: E. hormaechei, "E. xiangfangensis," "E. hoffmanii." While the former is well-accepted in the academic area, the latter may have a greater ability to distinguish different species of ECC. To assess the suitability of these identification criteria for clinical ECC isolates, we conducted a comprehensive analysis involving phylogenetic analysis, ANI and dDDH value alignment, virulence gene identification, and capsule typing on 256 clinical ECC strains isolated from the bloodstream. Our findings indicated that the method of categorizing E. hormaechei into five subspecies has better correlation and consistency with the molecular characteristics of clinical ECC isolates, as evidenced by phylogenetic analysis, virulence genes, and capsule typing. Therefore, the subspecies-based classification method appears more suitable for taxonomic assignments of clinical ECC isolates. IMPORTANCE: Standardizing taxonomy of the Enterobacter cloacae complex (ECC) is necessary for data integration across diverse studies. The study utilized whole-genome data to accurately identify 256 clinical ECC isolated from bloodstream infections using average nucleotide identity (ANI), digitalized DNA-DNA hybridization (dDDH), and phylogenetic analysis. Through comprehensive assessments including phylogenetic analysis, ANI and dDDH comparisons, virulence gene, and capsule typing of the 256 clinical isolates, it was concluded that the classification method based on subspecies exhibited better correlation and consistency with the molecular characteristics of clinical ECC isolates. In summary, this research contributes to the precise identification of clinical ECC at the species level and expands our understanding of ECC.

3.
Small ; : e2400850, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616735

RESUMO

Membrane-based osmotic energy harvesting is a promising technology with zero carbon footprint. High-performance ion-selective membranes (ISMs) are the core components in such applications. Recent advancement in 2D nanomaterials opens new avenues for building highly efficient ISMs. However, the majority of the explored 2D nanomaterials have a negative surface charge, which selectively enhances cation transport, resulting in the underutilization of half of the available ions. In this study, ISMs based on layered double hydroxide (LDH) with tunable positive surface charge are studied. The membranes preferentially facilitate anion transport with high selectivity. Osmotic energy harvesting device based on these membranes reached a power density of 2.31 W m-2 under simulated river/sea water, about eight times versus that of a commercial membrane tested under the same conditions, and up to 7.05 W m-2 under elevated temperature and simulated brine/sea water, and long-term stability with consistent performance over a 40-day period. A prototype reverse electrodialysis energy harvesting device, comprising a pair of LDH membranes and commercial cation-selective membranes, is able to simultaneously harvest energy from both cations and anions achieving a power density of 6.38 W m-2 in simulated river/sea water, demonstrating its potential as building blocks for future energy harvesting systems.

4.
CNS Drugs ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573471

RESUMO

BACKGROUND: Percutaneous endoscopic transforaminal discectomy (PETD) is an effective method for treating lumbar disc herniation, and is typically performed under local anesthesia. However, inadequate analgesia during the procedure remains a concern, prompting the search for a medication that can provide optimal pain control with minimal impact on the respiratory and circulatory systems. OBJECTIVES: The aim of this study was to observe the effects of different doses of esketamine combined with dexmedetomidine on reducing visual analog scale (VAS) scores during surgical interventions. METHODS: One hundred two patients who underwent PETD were randomly divided into a control group (group C: normal saline + dexmedetomidine), an E1 group (0.1 mg kg-1 esketamine + dexmedetomidine), and an E2 group (0.2 mg kg-1 esketamine + dexmedetomidine). The primary outcome was the maximum visual analogue scale (VAS) (score: 0 = no pain and 10 = worst pain) at six time points. The secondary outcomes included the Assessment of Alertness/Sedation Scale (OAA/S) score and mean arterial pressure (BP), heart rate (HR), respiratory rate (RR), and oxygen saturation (SpO2) at 11 time points. The incidence of adverse reactions during and 24 h after the operation and patient satisfaction with the anesthesia were also recorded. RESULTS: Compared with those in group C, the VAS scores of patients in groups E1 and E2 were lower at T6, T7, and T9 (P < 0.05). From T4 to T10, the OAA/S scores of the E1 and E2 groups were both lower than those of group C (P < 0.05), and at the T4-T6 time points, the OAA/S score of the E2 group was lower than that of group E1 (P < 0.05). At T4 and T5, the HR and BP of patients in groups E1 and E2 were greater than those in group C (P < 0.05). Compared with those in group C, the incidences of intraoperative illusion, floating sensation, postoperative dizziness, and hyperalgesia in groups E1 and E2 were significantly greater (P < 0.01). There was no significant difference in patient RR, SpO2, or postoperative satisfaction with anesthesia among the three groups (P > 0.05). CONCLUSION: The combination of esketamine and dexmedetomidine can reduce VAS scores during certain stages of this type of surgery; it has minimal impact on respiration and circulation. However, this approach is associated with increased incidences of postoperative dizziness and psychiatric side effects, which may also affect patients' compliance with surgical instructions from medical staff. Patient satisfaction was not greater with dexmedetomidine combined with esketamine than with dexmedetomidine alone. TRIAL REGISTRATION: http://www.chictr.org.cn . Identifier: ChiCTR2300068206. Date of registration: 10 February 2023.

5.
ACS Nano ; 18(11): 8496-8510, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456818

RESUMO

Designing three-dimensional (3D) porous carbonaceous skeletons for K metal is one of the most promising strategies to inhibit dendrite growth and enhance the cycle life of potassium metal batteries. However, the nucleation and growth mechanism of K metal on 3D skeletons remains ambiguous, and the rational design of suitable K hosts still presents a significant challenge. In this study, the relationships between the binding energy of skeletons toward K and the nucleation and growth of K are systematically studied. It is found that a high binding energy can effectively decrease the nucleation barrier, reduce nucleation volume, and prevent dendrite growth, which is applied to guide the design of 3D current collectors. Density functional theory calculations show that P-doped carbon (P-carbon) exhibits the highest binding energy toward K compared to other elements (e.g., N, O). As a result, the K@P-PMCFs (P-binding porous multichannel carbon nanofibers) symmetric cell demonstrates an excellent cycle stability of 2100 h with an overpotential of 85 mV in carbonate electrolytes. Similarly, the perylene-3,4,9,10-tetracarboxylic dianhydride || K@P-PMCFs cell achieves ultralong cycle stability (85% capacity retention after 1000 cycles). This work provides a valuable reference for the rational design of 3D current collectors.

6.
Cell Biol Int ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38444077

RESUMO

Oxidized low-density lipoprotein (oxLDL), a key component in atherosclerosis and hyperlipidemia, is a risk factor for atherothrombosis in dyslipidemia, yet its mechanism is poorly understood. In this study, we used oxLDL-induced human aortic endothelial cells (HAECs) and high-fat diet (HFD)-fed mice as a hyperlipidemia model. Phosphatidylserine (PS) exposure, cytosolic Ca2+ , reactive oxygen species (ROS), and lipid peroxidation were measured by flow cytometer. TMEM16F expression was detected by immunofluorescence, western blot, and reverse transcription polymerase chain reaction. Procoagulant activity (PCA) was measured by coagulation time, intrinsic/extrinsic factor Xase, and thrombin generation. We found that oxLDL-induced PS exposure and the corresponding PCA of HAECs were increased significantly compared with control, which could be inhibited over 90% by lactadherin. Importantly, TMEM16F expression in oxLDL-induced HAECs was upregulated by enhanced intracellular Ca2+ concentration, ROS, and lipid peroxidation, which led to PS exposure. Meanwhile, the knockdown of TMEM16F by short hairpin RNA significantly inhibited PS exposure in oxLDL-induced HAECs. Moreover, we observed that HFD-fed mice dramatically increased the progress of thrombus formation and accompanied upregulated TMEM16F expression by thromboelastography analysis, FeCl3 -induced carotid artery thrombosis model, and western blot. Collectively, these results demonstrate that TMEM16F-mediated PS exposure may contribute to prothrombotic status under hyperlipidemic conditions, which may serve as a novel therapeutic target for the prevention of thrombosis in hyperlipidemia.

7.
Mol Biol Rep ; 51(1): 403, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457002

RESUMO

BACKGROUND: Giardia duodenalis is an important intestinal parasitic protozoan that infects several vertebrates, including humans. Cattle are considered the major source of giardiasis outbreak in humans. This study aimed to investigate the prevalence and multilocus genotype (MLG) of G. duodenalis in Shanxi, and lay the foundation for the prevention and control of Giardiosis. METHODS AND RESULTS: DNA extraction, nested polymerase chain reaction, sequence analysis, MLG analysis, and statistical analysis were performed using 858 bovine fecal samples from Shanxi based on three gene loci: ß-giardin (bg), glutamate dehydrogenase (gdh), and triosephosphate isomerase (tpi). The overall prevalence of G. duodenalis was 28.3%, while its prevalence in Yingxian and Lingqiu was 28.1% and 28.5%, respectively. The overall prevalence of G. duodenalis in dairy cattle and beef cattle was 28.0% and 28.5%, respectively. G. duodenalis infection was detected in all age groups evaluated in this study. The overall prevalence of G. duodenalis in diarrhea and nondiarrhea samples was 32.4% and 27.5%, respectively, whereas that in intensively farmed and free-range cattle was 35.0% and 19.9%, respectively. We obtained 83, 53, and 59 sequences of bg, gdh, and tpi in G. duodenalis, respectively. Moreover, assemblage A (n = 2) and assemblage E (n = 81) by bg, assemblage A (n = 1) and assemblage E (n = 52) by gdh, and assemblage A (n = 2) and assemblage E (n = 57) by tpi were identified. Multilocus genotyping yielded 29 assemblage E MLGs, which formed 10 subgroups. CONCLUSIONS: To the best of our knowledge, this is the first study to report cattle infected with G. duodenalis in Shanxi, China. Livestock-specific G. duodenalis assemblage E was the dominant assemblage genotype, and zoonotic sub-assemblage AI was also detected in this region.


Assuntos
Giardia lamblia , Giardíase , Humanos , Bovinos , Animais , Giardia lamblia/genética , Tipagem de Sequências Multilocus , Proteínas de Protozoários/genética , Giardíase/epidemiologia , Giardíase/veterinária , Giardíase/parasitologia , Genótipo , China/epidemiologia , Prevalência , Fezes/parasitologia , Triose-Fosfato Isomerase/genética , Glutamato Desidrogenase/genética , Filogenia
8.
Cancer Lett ; 588: 216777, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38432582

RESUMO

Intrapleural immunotherapies have emerged as a prominent field in treating malignant pleural effusion (MPE). Among these, bacteria-based intrapleural therapy has exerted an anti-MPE effect by immuno-stimulating or cytotoxic properties. We previously engineered a probiotic Lactococcus lactis (FOLactis) expressing a fusion protein of Fms-like tyrosine kinase 3 and co-stimulator OX40 ligands. FOLactis activates tumor antigen-specific immune responses and displays systemic antitumor efficacy via intratumoral delivery. However, no available lesions exist in the pleural cavity of patients with MPE for intratumoral administration. Therefore, we further optimize FOLactis to treat MPE through intrapleural injection. Intrapleural administration of FOLactis (I-Pl FOLactis) not only distinctly suppresses MPE and pleural tumor nodules, but also significantly extends noticeable survival in MPE-bearing murine models. The proportion of CD103+ dendritic cells (DCs) in tumor-draining lymph nodes increases three-fold in FOLactis group, compared to the wild-type bacteria group. The enhanced DCs recruitment promotes the infiltration of effector memory T and CD8+ T cells, as well as the activation of NK cells and the polarization of macrophages to M1. Programmed death 1 blockade antibody combination further enhances the antitumor efficacy of I-Pl FOLactis. In summary, we first develop an innovative intrapleural strategy based on FOLactis, exhibiting remarkable efficacy and favorable biosafety profiles. These findings suggest prospective clinical translation of engineered probiotics for managing MPE through direct administration into the pleural cavity.


Assuntos
Antineoplásicos , Lactococcus lactis , Derrame Pleural Maligno , Humanos , Animais , Camundongos , Derrame Pleural Maligno/terapia , Lactococcus lactis/genética , Linfócitos T CD8-Positivos/metabolismo , Estudos Prospectivos , Antineoplásicos/uso terapêutico
9.
Am J Physiol Cell Physiol ; 326(5): C1423-C1436, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497113

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a pivotal coenzyme, essential for cellular reactions, metabolism, and mitochondrial function. Depletion of kidney NAD+ levels and reduced de novo NAD+ synthesis through the tryptophan-kynurenine pathway are linked to acute kidney injury (AKI), whereas augmenting NAD+ shows promise in reducing AKI. We investigated de novo NAD+ biosynthesis using in vitro, ex vivo, and in vivo models to understand its role in AKI. Two-dimensional (2-D) cultures of human primary renal proximal tubule epithelial cells (RPTECs) and HK-2 cells showed limited de novo NAD+ synthesis, likely due to low pathway enzyme gene expression. Using three-dimensional (3-D) spheroid culture model improved the expression of tubular-specific markers and enzymes involved in de novo NAD+ synthesis. However, de novo NAD+ synthesis remained elusive in the 3-D spheroid culture, regardless of injury conditions. Further investigation revealed that 3-D cultured cells could not metabolize tryptophan (Trp) beyond kynurenine (KYN). Intriguingly, supplementation of 3-hydroxyanthranilic acid into RPTEC spheroids was readily incorporated into NAD+. In a human precision-cut kidney slice (PCKS) ex vivo model, de novo NAD+ synthesis was limited due to substantially downregulated kynurenine 3-monooxygenase (KMO), which is responsible for KYN to 3-hydroxykynurenine conversion. KMO overexpression in RPTEC 3-D spheroids successfully reinstated de novo NAD+ synthesis from Trp. In addition, in vivo study demonstrated that de novo NAD+ synthesis is intact in the kidney of the healthy adult mice. Our findings highlight disrupted tryptophan-kynurenine NAD+ synthesis in in vitro cellular models and an ex vivo kidney model, primarily attributed to KMO downregulation.NEW & NOTEWORTHY Nicotinamide adenine dinucleotide (NAD+) is essential in regulating mitochondrial function. Reduced NAD+ synthesis through the de novo pathway is associated with acute kidney injury (AKI). Our study reveals a disruption in de novo NAD+ synthesis in proximal tubular models, but not in vivo, attributed to downregulation of enzyme kynurenine 3-monooxygenase (KMO). These findings highlight a crucial role of KMO in governing de novo NAD+ biosynthesis within the kidney, shedding light on potential AKI interventions.


Assuntos
Células Epiteliais , Túbulos Renais Proximais , Quinurenina 3-Mono-Oxigenase , NAD , Triptofano , Animais , Humanos , Camundongos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/enzimologia , Linhagem Celular , Células Cultivadas , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Cinurenina/metabolismo , Quinurenina 3-Mono-Oxigenase/metabolismo , Quinurenina 3-Mono-Oxigenase/genética , Camundongos Endogâmicos C57BL , NAD/metabolismo , NAD/biossíntese , Triptofano/metabolismo
10.
Food Chem ; 445: 138799, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401313

RESUMO

A novel 3D bio-printing vascular microtissue biosensor was developed to detect fish parvalbumin quickly. The graphite rod electrode was modified with gold and copper organic framework (Cu-MOF) to improve the sensor properties. Polydopamine-modified multi-wall carbon nanotubes (PDA-MWCNT) were mixed with gelatin methacryloyl (GelMA) to prepare a conductive hydrogel. The conductive hydrogel was mixed with mast cells and endothelial cells to produce a bio-ink for 3D bioprinting. High throughput and standardized preparation of vascular microtissue was performed by stereolithography 3D bioprinting. The vascular microtissue was immobilized on the modified electrode to construct the microtissue sensor. The biosensor's peak current was positively correlated with the fish parvalbumin concentration, and the detection linear concentration range was 0.1 ∼ 2.5 µg/mL. The standard curve equation was IDPV(µA) = 31.30 + 5.46 CPV(µg/mL), the correlation coefficient R2 was 0.990 (n = 5), and the detection limit was 0.065 µg/mL. These indicated a biomimetic microtissue sensor detecting fish parvalbumin has been successfully constructed.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Animais , Parvalbuminas , Nanotubos de Carbono/química , Células Endoteliais , Hidrogéis/química , Gelatina/química , Peixes , Impressão Tridimensional
11.
Neurochem Res ; 49(5): 1123-1136, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38337135

RESUMO

The brain's ventricles are filled with a colorless fluid known as cerebrospinal fluid (CSF). When there is an excessive accumulation of CSF in the ventricles, it can result in high intracranial pressure, ventricular enlargement, and compression of the surrounding brain tissue, leading to potential damage. This condition is referred to as hydrocephalus. Hydrocephalus is classified into two categories: congenital and acquired. Congenital hydrocephalus (CH) poses significant challenges for affected children and their families, particularly in resource-poor countries. Recognizing the psychological and economic impacts is crucial for developing interventions and support systems that can help alleviate the distress and burden faced by these families. As our understanding of CSF production and circulation improves, we are gaining clearer insights into the causes of CH. In this article, we will summarize the current knowledge regarding CSF circulation pathways and the underlying causes of CH. The main causes of CH include abnormalities in the FoxJ1 pathway of ventricular cilia, dysfunctions in the choroid plexus transporter Na+-K+-2Cl- contransporter isoform 1, developmental abnormalities in the cerebral cortex, and structural abnormalities within the brain. Understanding the causes of CH is indeed crucial for advancing research and developing effective treatment strategies. In this review, we will summarize the findings from existing studies on the causes of CH and propose potential research directions to further our understanding of this condition.


Assuntos
Hidrocefalia , Criança , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/patologia , Encéfalo/patologia , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Cabeça , Líquido Cefalorraquidiano
12.
Acta Biomater ; 178: 233-243, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423350

RESUMO

Biological materials exhibit complex structure-property relationships which are designed by nature's evolution over millions of years. Unlocking the fundamental physical principles behind these relationships is crucial for creating bioinspired materials and structures with advanced functionalities. The eggshell is a remarkable example with a well-designed structure to balance the trade-off as it provides mechanical protection while still being easy for hatching. In this study, we investigate the underlying mechanical design principles of chicken eggshells under various loading conditions through a combination of experiments and simulations. The unique geometry and structure of the eggshell play a critical role in achieving an excellent balance between mechanical toughness and ease of hatching. The effects of eggshell membranes are elucidated to tune the mechanical properties of the eggshell to further enhance this balance. Moreover, a mechanics-based three-index model is proposed based on these design principles, suggesting the optimal eggshell thickness design to improve survivability across a broad range of avian species with varying egg sizes. The survivability-design relationships hold great potential for the development of improved structural materials for applications in sports safety equipment and the packaging industry. STATEMENT OF SIGNIFICANCE: The fundamental physical principles underlying the complex structure-property relationships in biological materials are uncovered in this study, with a particular focus on chicken eggshells as a prime example. Through the investigation of their mechanical design, we reveal the critical role of eggshell geometry and structure in achieving a balance between toughness and ease of hatching. Specifically, the crack resting effect is observed, making the eggshell easier to break from the inside than from the outside. Additionally, we explore the influence of eggshell membranes on this balance, contributing to the enhancement of the eggshell's mechanical properties. For the first time, we propose a three-index model that uncovers the underlying principles governing the evolution of eggshell thickness. This model suggests optimal thickness designs for diverse avian species, with the goal of enhancing egg survivability. These findings can guide the development of improved structural materials with advanced functionalities, enabling greater safety and efficiency in a wide range of applications.


Assuntos
Materiais Biomiméticos , Casca de Ovo , Animais , Casca de Ovo/química , Galinhas
13.
Clin Ophthalmol ; 18: 517-523, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410631

RESUMO

Objective: To investigate the association between the peripheral refractive errors of the fundus in different regions and moderate and high myopia. Methods: In this case-control study, 320 children and adolescents aged 6 to 18 years were recruited. Peripheral refractive errors were measured using multispectral retinal refractive topography (MRT). Spherical equivalent (SE) and cylinder errors were classified into low, moderate, and high categories based on the magnitude range. Logistic regression was performed to test the factors associated with myopia. Results: There were 152 participants with low myopia and 168 participants with moderate and high myopia included in the current study. Participants with moderate and high myopia were most likely to be older, with larger axial length (AL), lower SE, less time to watch electronic devices on the weekend, a higher difference between central refractive error and paracentral refractive error from the superior side of the retina (RDV-S), but a smaller difference between the central refractive error and paracentral refractive error from the inferior side of the retina (RDV-I) than those with low myopia (all P <0.05). After logistic analysis, female sex (odds ratio [OR] = 4.14; 95% confidence interval [CI] = 2.16-7.97, P <0.001), AL (OR = 6.88, 95% CI = 4.33-10.93, P <0.001), and RDV-I (OR = 0.52, 95% CI = 0.32-0.86, P = 0.010) were independent factors for moderate and high myopia. Conclusion: Our study demonstrated that the retina peripheral refraction of the eyes (RDV-I) was associated with moderate and high myopia, and RDV-S was only associated with high myopia.

14.
Phys Rev Lett ; 132(3): 035102, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307060

RESUMO

We report the first experimental observation on the reduction of backward scatterings by an instantaneous broadband laser with 0.6% bandwidth in conditions of interest for inertial confinement fusion at the low-coherence Kunwu laser facility. The backscatter of stimulated Brillouin scattering (SBS) was robustly reduced by half at intensities of 1-5×10^{14} W/cm^{2} with the 0.53-µm broadband laser in comparison with the monochromatic laser. As SBS dominates energy loss of laser-plasma interactions, the reduction of that demonstrates the enhancement of laser-target coupling by the use of broadband laser. The mitigation of filamentation leads to the reduction of stimulated Raman backscattering at low intensities. In addition, the three-halves harmonic emission was reduced with the broadband laser as well.

15.
Environ Res ; 249: 118236, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266893

RESUMO

Excessive noise exposure presents significant health risks to humans, affecting not just the auditory system but also the cardiovascular and central nervous systems. This study focused on three male macaque monkeys as subjects. 90 dB sound pressure level (SPL) pure tone exposure (frequency: 500Hz, repetition rate: 40Hz, 1 min per day, continuously exposed for 5 days) was administered. Assessments were performed before exposure, during exposure, immediately after exposure, and at 7-, 14-, and 28-days post-exposure, employing auditory brainstem response (ABR) tests, electrocardiograms (ECG), and electroencephalograms (EEG). The study found that the average threshold for the Ⅴ wave in the right ear increased by around 30 dB SPL right after exposure (P < 0.01) compared to pre-exposure. This elevation returned to normal within 7 days. The ECG results indicated that one of the macaque monkeys exhibited an RS-type QRS wave, and inverted T waves from immediately after exposure to 14 days, which normalized at 28 days. The other two monkeys showed no significant changes in their ECG parameters. Changes in EEG parameters demonstrated that main brain regions exhibited significant activation at 40Hz during noise exposure. After noise exposure, the power spectral density (PSD) in main brain regions, particularly those represented by the temporal lobe, exhibited a decreasing trend across all frequency bands, with no clear recovery over time. In summary, exposure to 90 dB SPL noise results in impaired auditory systems, aberrant brain functionality, and abnormal electrocardiographic indicators, albeit with individual variations. It has implications for establishing noise protection standards, although the precise mechanisms require further exploration by integrating pathological and behavioral indicators.


Assuntos
Eletrocardiografia , Eletroencefalografia , Potenciais Evocados Auditivos do Tronco Encefálico , Ruído , Animais , Masculino , Ruído/efeitos adversos , Macaca/fisiologia
16.
Cancer Immunol Immunother ; 73(1): 12, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231411

RESUMO

BACKGROUND: The introduction of the anti-PD-1 antibody has greatly improved the clinical outcomes of patients with non-small cell lung cancer (NSCLC). In this study, we retrospectively analyzed the efficacy of PD-1 antibody-based therapy in patients with locally advanced inoperable or metastatic NSCLC and reported an association between peripheral blood biomarkers and clinical response in these patients. METHODS: This single-center study included medical record data of patients with NSCLC treated with the PD-1 antibody as a first-line or subsequent line of treatment, either as monotherapy or in combination with chemotherapy. The patients were enrolled from 2020 to 2022. We dynamically evaluated multiple Th1 and Th2 cytokines in the blood serum and analyzed the phenotype of T cells from the peripheral blood to explore the correlation between cytokine levels, T cell phenotypes, and clinical response. RESULTS: A total of 88 patients with stage IIIA-IV NSCLC were enrolled, out of which 60 (68.18%) achieved a partial response (PR), 13 (14.77%) had stable disease (SD), and 15 (17.05%) experienced disease progression (PD). The disease control rate was 82.95%. Our results suggested a significant reduction (P = 0.002, P < 0.005) in lymphocyte absolute counts after treatment in patients with PD. Higher levels of IFN-γ (P = 0.023, P < 0.05), TNF-α (P = 0.00098, P < 0.005), IL-4 (P = 0.0031, P < 0.005), IL-5 (P = 0.0015, P < 0.005), and IL-10 (P = 0.036, P < 0.05) were detected in the peripheral blood before treatment in the PR group compared to the PD group. Moreover, patients with high levels of IL-5, IL-13, IL-4, IL-6, IFN-γ, and TNF-α (> 10 ng/mL) had superior progression-free survival compared to those with low levels (< 10 ng/mL). Furthermore, PD-1 expression on CD8+ T cells was higher in patients who showed a PR than in those who did not show a response (SD + PD; P = 0.042, P < 0.05). CONCLUSIONS: The findings of this study imply that the decrease in absolute blood lymphocyte counts after treatment is correlated with disease progression. Serum cytokine levels may predict the effectiveness and survival rates of anti-PD-1 blockade therapy in patients with NSCLC. In addition, PD-1 expression on CD8+ T cells was positively associated with better clinical response. Our findings highlight the potential of peripheral blood biomarkers to predict the effectiveness of PD-1-targeted treatments in patients with NSCLC. Larger prospective studies are warranted to further clarify the value of these biomarkers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linfócitos T CD8-Positivos , Interleucina-4 , Interleucina-5 , Receptor de Morte Celular Programada 1 , Estudos Retrospectivos , Fator de Necrose Tumoral alfa , Neoplasias Pulmonares/tratamento farmacológico , Biomarcadores , Citocinas , Progressão da Doença
17.
Adv Sci (Weinh) ; 11(12): e2306518, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38234238

RESUMO

Colloidal semiconductor nanoplatelets (NPLs) have emerged as low-cost and free-standing alternates of traditional quantum wells. The giant heavy- and light-hole splitting in NPLs allows for efficient optical spin injection. However, the electron spin lifetimes for prototypical CdSe NPLs are within a few picoseconds, likely limited by strong electron-hole exchange in these quantum- and dielectric-confined materials. Here how this hurdle can be overcome with engineered NPL-heterostructures is demonstrated. By constructing type-I CdSe/ZnS core/shell NPLs, dielectric screening inside the core is strongly enhanced, prolonging the electron spin polarization time (τesp) to over 30 ps (or 60 ps electron spin-flip time). Alternatively, by growing type-II CdSe/CdTe core/crown NPLs to spatially separate electron and hole wavefunctions, the electron-hole exchange is strongly suppressed, resulting in τesp as long as 300 ps at room temperature. This study not only exemplifies how the well-established synthetic chemistry of colloidal heterostructures can aid in spin dynamics control but also establishes the feasibility of room-temperature coherent spin manipulation in colloidal NPLs.

18.
Plant Commun ; 5(4): 100816, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38219012

RESUMO

Weeds pose a significant threat to crop production, resulting in substantial yield reduction. In addition, they possess robust weedy traits that enable them to survive in extreme environments and evade human control. In recent years, the application of multi-omics biotechnologies has helped to reveal the molecular mechanisms underlying these weedy traits. In this review, we systematically describe diverse applications of multi-omics platforms for characterizing key aspects of weed biology, including the origins of weed species, weed classification, and the underlying genetic and molecular bases of important weedy traits such as crop-weed interactions, adaptability to different environments, photoperiodic flowering responses, and herbicide resistance. In addition, we discuss limitations to the application of multi-omics techniques in weed science, particularly compared with their extensive use in model plants and crops. In this regard, we provide a forward-looking perspective on the future application of multi-omics technologies to weed science research. These powerful tools hold great promise for comprehensively and efficiently unraveling the intricate molecular genetic mechanisms that underlie weedy traits. The resulting advances will facilitate the development of sustainable and highly effective weed management strategies, promoting greener practices in agriculture.


Assuntos
Multiômica , Controle de Plantas Daninhas , Humanos , Controle de Plantas Daninhas/métodos , Plantas Daninhas/genética , Agricultura , Produtos Agrícolas/genética
19.
Angew Chem Int Ed Engl ; 63(12): e202320060, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38285010

RESUMO

Room-temperature sodium-sulfur (RT Na-S) batteries are promising for low-cost and large-scale energy storage applications. However, these batteries are plagued by safety concerns due to the highly flammable nature of conventional electrolytes. Although non-flammable electrolytes eliminate the risk of fire, they often result in compromised battery performance due to poor compatibility with sodium metal anode and sulfur cathode. Herein, we develop an additive of tin trifluoromethanesulfonate (Sn(OTf)2 ) in non-flammable phosphate electrolytes to improve the cycling stability of RT Na-S batteries via modulating the Na+ solvation environment and interface chemistry. The additive reduces the Na+ desolvation energy and enhances the electrolyte stability. Moreover, it facilitates the construction of Na-Sn alloy-based anode solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI). These interphases help to suppress the growth of Na dendrites and the dissolution/shuttling of sodium polysulfides (NaPSs), resulting in improved reversible capacity. Specifically, the Na-S battery with the designed electrolyte boosts the capacity from 322 to 906 mAh g-1 at 0.5 A g-1 . This study provides valuable insights for the development of safe and high-performance electrolytes in RT Na-S batteries.

20.
EClinicalMedicine ; 67: 102378, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38188688

RESUMO

Background: Essential thrombocythemia (ET), a myeloproliferative neoplasm (MPN), has a substantial risk of evolving into post-essential thrombocythemia myelofibrosis (post-ET MF). This study aims to establish a prediction nomogram for early prediction of post-ET MF in ET patients. Methods: The training cohort comprised 558 patients from 8 haematology centres between January 1, 2010, and May 1, 2023, while the external validation cohort consisted of 165 patients from 6 additional haematology centres between January 1, 2010, and May 1, 2023. Univariable and multivariable Cox regression analysis was performed to identified independent risk factors and establish a nomogram to predict the post-ET MF free survival. Both bias-corrected area under the curve (AUC), calibration curves and concordance index (C-index) were employed to assess the predictive accuracy of the nomogram. Findings: Multivariate Cox regression demonstrated that elevated red blood cell distribution width (RDW), elevated levels of lactate dehydrogenase (LDH) and the level of haemoglobin (Hb), a history of smoking and the presence of splenomegaly were independent risk factors for post-ET MF. The C-index displayed of the training and validation cohorts were 0.877 and 0.853. The 5 years, 10 years AUC values in training and external validation cohorts were 0.948, 0.769 and 0.978, 0.804 respectively. Bias-corrected curve is close to the ideal curve and revealed a strong consistency between actual observation and prediction. Interpretation: We developed a nomogram capable of predicting the post-ET MF free survival probability at 5 years and 10 years in ET patients. This tool helps doctors identify patients who need close monitoring and appropriate counselling. Funding: This research was funded by the Key R&D Program of Zhejiang (No. 2022C03137); the Public Technology Application Research Program of Zhejiang, China (No. LGF21H080003); and the Zhejiang Medical Association Clinical Medical Research special fund project (No. 2022ZYC-D09).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...