Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675519

RESUMO

The massive amount of water-soluble urea used leads to nutrient loss and environmental pollution in both water and soil. The aim of this study was to develop a novel lignin-based slow-release envelope material that has essential nitrogen and sulfur elements for plants. After the amination reaction with a hydrolysate of yak hair keratin, the coating formulation was obtained by adding different loadings (2, 5, 8, 14 wt%) of aminated lignin (AL) to 5% polyvinyl alcohol (PVA) solution. These formulations were cast into films and characterized for their structure, thermal stability, and mechanical and physicochemical properties. The results showed that the PVA-AL (8%) formulation had good physical and chemical properties in terms of water absorption and mechanical properties, and it showed good degradation in soil with 51% weight loss after 45 days. It is suitable for use as a coating material for fertilizers. Through high-pressure spraying technology, enveloped urea particles with a PVA-AL (8%) solution were obtained, which showed good morphology and slow-release performance. Compared with urea, the highest urea release was only 96.4% after 30 days, conforming to Higuchi model, Ritger-Peppas model, and second-order dynamic model. The continuous nitrogen supply of PVA-AL coated urea to Brassica napus was verified by potting experiments. Therefore, the lignin-based composite can be used as a coating material to produce a new slow-release nitrogen fertilizer for sustainable crop production.


Assuntos
Lignina , Álcool de Polivinil , Ureia , Lignina/química , Álcool de Polivinil/química , Ureia/química , Preparações de Ação Retardada/química , Fertilizantes , Polímeros/química
2.
Materials (Basel) ; 17(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473558

RESUMO

The microstructures and mechanical properties of a γ'-strengthened nickel-based superalloy, GH4099, produced by laser powder bed fusion, at room temperature and 900 °C are investigated, followed by three various heat treatments. The as-built (AB) alloy consists of cellular/dendrite substructures within columnar grains aligning in <100> crystal orientation. No γ' phase is observed in the AB sample due to the relatively low content of Al +Ti. Following the standard solid solution treatment, the molten pool boundaries and cellular/dendrite substructures disappear, whilst the columnar grains remain. The transformation of columnar grains to equiaxed grains occurs through the primary solid solution treatment due to the recovery and recrystallization process. After aging at 850 °C for 480 min, the carbides in the three samples distributed at grain boundaries and within grains and the spherical γ' phase whose size is about 43 nm ± 16 nm develop in the standard solid solution + aging and primary solid solution + aging samples (SA and PA samples) while the bimodal size of cubic (181 nm ± 85 nm) and spherical (43 nm ± 16 nm) γ' precipitates is presented in the primary solid solution + secondary solid solution + aging sample (PSA samples). The uniaxial tensile tests are carried out at room temperature (RT) and 900 °C. The AB sample has the best RT ductility (~51% of elongation and ~67% of area reduction). Following the three heat treatments, the samples all acquire excellent RT tensile properties (>750 MPa of yield strengths and >32% of elongations). However, clear ductility dips and intergranular fracture modes occur during the 900 °C tensile tests, which could be related to carbide distribution and a change in the deformation mechanism.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38386575

RESUMO

Considering the impulsive delayed reaction-diffusion stochastic neural networks (IDRDSNNs) with hybrid impulses, the finite-time boundedness (FTB) and finite-time contractive boundedness (FTCB) are investigated in this article. First, a novel delay integral inequality is presented. By integrating this inequality with the comparison principle, some sufficient conditions that ensure the FTB and FTCB of IDRDSNNs are obtained. This study demonstrates that the FTB of neural networks with hybrid impulses can be maintained, even in the presence of impulsive perturbations. And for a system that is not FTB due to impulsive perturbations, achieving FTB is possible through the implementation of appropriate impulsive control and optimization of the average impulsive intervals. In addition, to validate the practicality of our results, three illustrative examples are provided. In the end, these theoretical findings are successfully applied to image encryption.

4.
J Am Chem Soc ; 146(10): 6409-6421, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38412558

RESUMO

Green ammonia (NH3), made by using renewable electricity to split nearly limitless nitrogen (N2) molecules, is a vital platform molecule and an ideal fuel to drive the sustainable development of human society without carbon dioxide emission. The NH3 electrosynthesis field currently faces the dilemma of low yield rate and efficiency; however, decoupling the overlapping issues of this area and providing guidelines for its development directions are not trivial because it involves complex reaction process and multidisciplinary entries (for example, electrochemistry, catalysis, interfaces, processes, etc.). In this Perspective, we introduce a classification scheme for NH3 electrosynthesis based on the reaction process, namely, direct (N2 reduction reaction) and indirect electrosynthesis (Li-mediated/plasma-enabled NH3 electrosynthesis). This categorization allows us to finely decouple the complicated reaction pathways and identify the specific rate-determining steps/bottleneck issues for each synthesis approach such as N2 activation, H2 evolution side reaction, solid-electrolyte interphase engineering, plasma process, etc. We then present a detailed overview of the latest progresses on solving these core issues in terms of the whole electrochemical system covering the electrocatalysts, electrodes, electrolytes, electrolyzers, etc. Finally, we discuss the research focuses and the promising strategies for the development of NH3 electrosynthesis in the future with a multiscale perspective of atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes/interfaces, and macroscale electrolyzers/processes. It is expected that this Perspective will provide the readers with an in-depth understanding of the bottleneck issues and insightful guidance on designing the efficient NH3 electrosynthesis systems.

5.
J Neurol ; 271(3): 1439-1450, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38032370

RESUMO

Posterior cortical atrophy (PCA) is a rare neurodegenerative condition characterized by progressive visual and visuospatial dysfunction. The consensus criteria state that patients should present "relatively spared behavior and personality" in early stages. However, limited research has focused on these symptoms in PCA. This study compared 157 patients with PCA in early stages of the disease with 352 healthy controls (HC), 202 typical AD (tAD), and 177 logopenic variant primary progressive aphasia (lvPPA) patients from the National Alzheimer's Coordinating Center (NACC) dataset. They were compared using clinician ratings of behavioral symptoms, informant- and clinician-filled questionnaires and patient-facing tests of behavior and social cognition. Results showed that PCA individuals exhibited many behavioral symptoms, the more frequently reported being anxiety, depression, apathy, and irritability. During cognitive testing, clinicians observed disorganized and reactive behaviors, but no insensitive behaviors. Informant reports indicated that PCA patients exhibited higher levels of inhibition and anxiety in response to stimuli associated with non-reward, novelty, and punishment. Social norms knowledge and empathy were overall preserved, although slight decreases in perspective-taking and socioemotional sensitivity were observed on informant-rated questionnaires. Except for more elevated neuropsychiatric symptoms in tAD, the three AD variants had similar profiles. Our findings provide insights into the social cognition and behavioral profiles of PCA, highlighting patterns of preservations and mild impairments, even in the early stages of the disease. These results contribute to a more complete understanding of non-visual symptoms in PCA and have implications for diagnostic and intervention strategies.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Cognição Social , Doenças Neurodegenerativas/complicações , Testes Neuropsicológicos , Atrofia/complicações , Cognição
6.
Small ; 20(11): e2307349, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38105349

RESUMO

Co electroreduction of carbon dioxide and nitrate to synthesize urea provides an alternative strategy to high energy-consumption traditional methods. However, the complexity of the reaction mechanism and the high energy barrier of nitrate reduction result in a diminished production of urea. Herein, a convenient electrodeposition technique to prepare the FeOOH with low spin state iron that increases the yield rate of urea efficiently is employed. According to soft X-ray Absorption Spectroscopy and theoretical calculations, the unique configuration of low spin state iron as electron acceptors can effectively induce electron pair transfer from the occupied σ orbitals of intermediate * NO to empty d orbitals of iron. This σ→d donation mechanism leads to a reduction in the energy barrier associated with the rate-determining step (* NOOH→* NO + * OH), hence augmenting the urea generation. The low spin state iron presents a high urea yield rate of 512 µg h-1  cm-2 , representing approximately two times compared to the medium spin state iron. The key intermediates (* NH2 and * CO) in the formation of C─N bond are detected with in situ Fourier transform infrared spectroscopy. The coupling of * NH2 and * CO contributes to the formation of * CONH2 , which subsequently endures multi-step proton-coupled electron transfer to generate urea.

7.
Materials (Basel) ; 15(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36079213

RESUMO

We investigated the effect of different sintering temperatures ranging from 200 °C to 600 °C on the porous properties and pore microstructure of large capillary pressure wicks made of carbonyl nickel powder. The evolution model of hydraulic diameter was established and verified by the maximum pore diameter. Hydraulic diameter changed as the roughness of particle surfaces decreased and sintering necks grew large during sintering. In the contact-formation stage and the initial sintering stage (200−500 °C), the decrease in the roughness of particle surfaces played a decisive role, contributing to an increase in hydraulic diameter. In the intermediate sintering stage (600 °C), the growth of sintering necks dominated the process, however the hydraulic diameter was reduced. These results show that the maximum pore diameter first increased and then decreased in the same way as our evolution model. Permeability and capillary performance of the wicks first increased and then declined with increasing sintering temperature. We found the optimal sintering temperature to be 400 °C, at which point the wicks achieved the maximum pore diameter of 1.21 µm, a permeability of 1.77 × 10−14 m2, and their highest capillary performance of 1.46 × 10−8 m.

8.
J Am Chem Soc ; 144(23): 10193-10200, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35586910

RESUMO

Integrated/cascade plasma-enabled N2 oxidation and electrocatalytic NOx- (where x = 2, 3) reduction reaction (pNOR-eNOx-RR) holds great promise for the renewable synthesis of ammonia (NH3). However, the corresponding activated effects and process of plasma toward N2 and O2 molecules and the mechanism of eNOx-RR to NH3 are unclear and need to be further uncovered, which largely limits the large-scale deployment of this process integration technology. Herein, we systematically investigate the plasma-enabled activation and recombination processes of N2 and O2 molecules, and more meaningfully, the mechanism of eNOx-RR at a microscopic level is also decoupled using copper (Cu) nanoparticles as a representative electrocatalyst. The concentration of produced NOx in the pNOR system is confirmed as a function of the length for spark discharge as well as the volumetric ratio for N2 and O2 feeding gas. The successive protonation process of NOx- and the key N-containing intermediates (e.g., -NH2) of eNOx-RR are detected with in situ infrared spectroscopy. Besides, in situ Raman spectroscopy further reveals the dynamic reconstruction process of Cu nanoparticles during the eNOx-RR process. The Cu nanoparticle-driven pNOR-eNOx-RR system can finally achieve a high NH3 yield rate of ∼40 nmol s-1 cm-2 and Faradaic efficiency of nearly 90%, overperforming the benchmarks reported in the literature. It is anticipated that this work will stimulate the practical development of the pNOR-eNOx-RR system for the green electrosynthesis of NH3 directly from air and water under ambient conditions.


Assuntos
Amônia , Cobre , Amônia/química , Cobre/química , Oxirredução , Espectrofotometria Infravermelho
9.
IEEE Trans Cybern ; 52(5): 2687-2697, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33001822

RESUMO

This article studies the practical exponential stability of impulsive stochastic reaction-diffusion systems (ISRDSs) with delays. First, a direct approach and the Lyapunov method are developed to investigate the p th moment practical exponential stability and estimate the convergence rate. Note that these two methods can also be used to discuss the exponential stability of systems in certain conditions. Then, the practical stability results are successfully applied to the impulsive reaction-diffusion stochastic Hopfield neural networks (IRDSHNNs) with delays. By the illustration of four numerical examples and their simulations, our results in this article are proven to be effective in dealing with the problem of practical exponential stability of ISRDSs with delays, and may be regarded as stabilization results.


Assuntos
Algoritmos , Redes Neurais de Computação , Difusão , Processos Estocásticos , Fatores de Tempo
10.
J Asian Nat Prod Res ; 22(9): 839-849, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31364407

RESUMO

The synergistic anti-tumor effect of schisandrin B (Sch.B) and apatinib was investigated in vitro. The CCK-8 assay revealed that Sch.B enhanced the inhibition of apatinib on cell proliferation by arresting cell cycle in G0/G1 phase. Sch.B also potentiated the suppression of apatinib on cell migration and invasion, by means of wound-healing and transwell invasion assay. Flow cytometry results showed that Sch.B enhanced apoptosis induced by apatinib. The results were confirmed by western blot analysis of the proteins MMP-9, and Bax caspase-9, and -12. These results suggest that combining apatinib and Sch.B is an effective therapeutic strategy for preventing GC progression. [Formula: see text].


Assuntos
Apoptose , Ciclo-Octanos , Linhagem Celular Tumoral , Proliferação de Células , Lignanas , Estrutura Molecular , Compostos Policíclicos , Piridinas
11.
Sci Rep ; 9(1): 14307, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586111

RESUMO

Wood plastic composites (WPCs) made from plant fibres and plastics have gained more and more attention. Studies have been focused on preparation and mechanical performance of WPCs. While mechanism of chemical modification of cereal straw has rarely been reported. In the present work, rice straw was etherified with epichlorohydrin (EPI) and the mechanism of etherification was investigated. Natural rice straw (NRS) was pretreated with NaOH to move most of hemicellulose and lignin. The alkali treated rice straw (ARS), whose dominant component being cellulose, was etherified with EPI at 120 °C for 1-8 h in toluene with NaOH as catalyst. NRS, ARS and etherified rice straw (ERS) were characterized and analyzed by FT-IR, solid CP/MAS 13C-NMR, elemental analysis and neutral sugar analysis. The etherification reaction was finished within 5 h, and C3H6O units were introduced into the structure of cellulose, leading to the increase of contents of C and H in ERS. The etherification process of ARS in alkaline medium was divided into three stages, during which two hydroxyl groups were replaced by two ether bonds successively, and a new hydroxyl group was formed in the last step. The number of hydroxyl groups in ERS was reduced, and reduction of hydrophilicity of ERS could be expected.


Assuntos
Celulose/química , Epicloroidrina/química , Oryza/química , Caules de Planta/química , Alquilação
12.
Neural Netw ; 116: 35-45, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31003055

RESUMO

In this paper, we study stochastic impulsive reaction-diffusion neural networks with S-type distributed delays, aiming to obtain the sufficient conditions for global exponential stability. First, an impulsive inequality involving infinite delay is introduced and the asymptotic behaviour of its solution is investigated by the truncation method. Then, global exponential stability in the mean-square sense of the stochastic impulsive reaction-diffusion system is studied by constructing a simple Lyapunov-Krasovskii functional where the S-type distributed delay is handled by the impulsive inequality. Numerical examples are also given to verify the effectiveness of the proposed results. Finally, the obtained theoretical results are successfully applied to an image encryption scheme based on bit-level permutation and the stochastic neural networks.


Assuntos
Segurança Computacional , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Segurança Computacional/normas , Difusão , Humanos , Reconhecimento Automatizado de Padrão/normas , Processos Estocásticos , Fatores de Tempo
13.
IEEE Trans Neural Netw Learn Syst ; 30(5): 1575-1580, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30273158

RESUMO

This brief investigates nonautonomous stochastic reaction-diffusion neural-network models with S-type distributed delays. First, the existence and uniqueness of mild solution are studied under the Lipschitz condition without the linear growth condition. Due to the existence of a nonautonomous reaction-diffusion term and the infinite dimensional Wiener process, the criteria for the well-posedness of the models are established based on the evolution system theory. Then, the S-type distributed delay, which is an infinite delay, is handled by the truncation method, and sufficient conditions for the global exponential stability are obtained by constructing a simple Lyapunov-Krasovskii functional candidate. Finally, neural-network examples and an illustrative example are given to show the applications of the obtained results.

14.
Sci Rep ; 8(1): 6463, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691477

RESUMO

In the present paper, granular activated carbon (GAC) supported titanium dioxide (TiO2@GAC) particles were prepared by sol-gel process. Their performance in simultaneous adsorption of dye and Cu2+ from wastewater was studied. X-ray diffraction (XRD) indicated that TiO2 of the TiO2@GAC microsphere is anatase type, and Fourier transform infrared spectroscopy (FT-IR) showed that the samples have obvious characteristic peaks in 400-800 cm-1, which indicated that there are Ti-O-Ti bonds. The experimental results showed that the adsorption of TiO2@GAC for Methylene blue (MB) and Cu2+ were favorable under acidity condition, the adsorption of Methyl orange (MO) was favorable under alkalecent condition. The reaction kinetics of TiO2@GAC for MO, MB and Cu2+ were well described as pseudo-second-order kinetic model; The reaction isotherms for MO, MB and Cu2+ were well fitted by Langmuir model. The maximum adsorption capacity of TiO2@GAC for MO, MB and Cu2+ in the single systems were 32.36 mg/g, 25.32 mg/g and 23.42 mg/g, respectively. As for adsorption, Cu2+ had a suppression effect on MB, and a promotion effect on MO, however, the impact of MO and MB on Cu2+ were negligible.

15.
Pharmacogn Mag ; 13(50): 222-225, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28539711

RESUMO

BACKGROUND: Limonium bicolor, a halophytic species, can grow in saline or saline-alkali soil, is well known as a traditional Chinese medicine. Recently it attracted much attention for its treatment for cancer. OBJECTIVE: The present study was performed to evaluate this species from the phytochemical standpoint and the possible relationship between the antitumor activity and its natural products. MATERIALS AND METHODS: The chemical constituents from the flowers of L. bicolor were investigated through bioassay-guided fractionation and isolation. All the individual compounds were characterized by spectroscopic analysis and their potential antitumor activity was tested against three different human tumor cell lines by MTT assays. RESULTS: The EtOAc extract was proven as the most potent fraction and further fractionation led to the isolation of 15 natural flavonoids, which were characterized as luteolin (1), acacetin (2), quercetin (3), isorhamnetin (4), kaempferol (5), eriodictyol (6), kaempferol-3-O-α-L-rhamnoside (7), kaempferol-3-O-ß-D-glucoside (8), quercetin-3-O-α-L-rhamnoside (9), quercetin-3-O-ß-D-glucoside (10), quercetin-3-O-ß-D-galactoside (11), myricetin-3-O-α-L-rhamnoside (12), kaempferol-3-O-(6″-O-galloyl)-ß-D-glucoside (13), hesperidin (14) and rutin (15). The biotesting results demonstrated that both compounds 1 and 3 showed good cytotoxicity against human colon cancer cells (LOVO). Compound 5 exhibited relative greater growth inhibition against both human breast cancer cells (MCF-7) and osteosarcoma cell lines (U2-OS) at the concentration of 100 µg/mL. CONCLUSION: On the basis of these findings, the flavonoids were deduced to be potentially responsible for the antitumor activity of L. bicolor. The preliminary structure-activity relationship analysis suggests that the 3-O-glycosylation moiety in natural flavonoids was not essential for the antiproliferative activity on LOVO and U2-OS cells. SUMMARY: The phytochemical investigation of Limonium bicolor led to the isolation of 15 flavonoids.The biotesting of the isolates against three different human tumor cell lines was evaluated.The structure-antitumor activity relationship between the isolated flavonoids was discussed. Abbreviation used: MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, EtOAc: Ethyl acetate; LOVO: human colon cancer; MCF-7: human breast, cancer; U2-OS: human osteosarcoma; 5-FU: 5-Fluorouracil; DMSO: dimethyl sulfoxide, NMR: nuclear magnetic resonance; HR-ESI-MS: high resolution electrospray ionization mass chromatography, HPLC: high performance liquid chromatography, EtOH: ethanol; n-BuOH: n-butanol; CC: column chromatography, TLC: thin layer chromatography; PBS: phosphate-buffered saline.

16.
ACS Appl Mater Interfaces ; 9(19): 16524-16535, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28448124

RESUMO

Layered constructs from poly(ethylene glycol) (PEG) hydrogels and chicken eggshell membranes (ESMs) are fabricated, which can be further cross-linked by glutaraldehyde (GA) to form GA-PEG-ESM composites. Our results indicate that ESMs composed of protein fibrous networks show elastic moduli ∼3.3-5.0 MPa and elongation percentages ∼47-56%, close to human heart valve leaflets. Finite element simulations reveal obvious stress concentration on a partial number of fibers in the GA-cross-linked ESM (GA-ESM) samples, which can be alleviated by efficient stress distribution among multiple layers of ESMs embedded in PEG hydrogels. Moreover, the polymeric networks of PEG hydrogels can prevent mineral deposition and enzyme degradation of protein fibers from incorporated ESMs. The fibrous structures of ESMs retain in the GA-PEG-ESM samples after subcutaneous implantation for 4 weeks, while those from ESM and GA-ESM samples show early degradation to certain extent, suggesting the prevention of enzymatic degradation of protein fibers by the polymeric network of PEG hydrogels in vivo. Thus, these GA-PEG-ESM layered constructs show heterogenic structures and mechanical properties comparable to heart valve leaflets, as well as improved functions to prevent progressive calcification and enzymatic degeneration, which are likely used for artificial heart valves.


Assuntos
Polietilenoglicóis/química , Materiais Biocompatíveis , Valvas Cardíacas , Humanos , Hidrogéis , Engenharia Tecidual
17.
IEEE Trans Neural Netw Learn Syst ; 27(9): 1816-26, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26259224

RESUMO

In this paper, we focus on the long time behavior of the mild solution to delayed reaction-diffusion Hopfield neural networks (DRDHNNs) driven by infinite dimensional Wiener processes. We analyze the existence, uniqueness, and stability of this system under the local Lipschitz function by constructing an appropriate Lyapunov-Krasovskii function and utilizing the semigroup theory. Some easy-to-test criteria affecting the well-posedness and stability of the networks, such as infinite dimensional noise and diffusion effect, are obtained. The criteria can be used as theoretic guidance to stabilize DRDHNNs in practical applications when infinite dimensional noise is taken into consideration. Meanwhile, considering the fact that the standard Brownian motion is a special case of infinite dimensional Wiener process, we undertake an analysis of the local Lipschitz condition, which has a wider range than the global Lipschitz condition. Two samples are given to examine the availability of the results in this paper. Simulations are also given using the MATLAB.

18.
IEEE Trans Neural Netw ; 13(1): 250-1, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-18244426

RESUMO

The paper points out an unjustified inequality in the paper by X.F. Liao and J.Yu (see ibid., vol.9, p.1042-5, 1998). It concludes that Liao's theorem based on this wrong inequality is not true.

19.
Inorg Chem ; 36(8): 1536-1540, 1997 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-11669740

RESUMO

Systematic analysis of rare earth element complexes has been carefully carried out in the liquid and solid states but not in the gaseous state because of the lack of a complete set of experimental data for any kind of vapor complexes of all rare earth elements. Here we present experimental quenching results which suggest that the LnAl(3)Cl(12) complexes are the predominant vapor complexes roughly in the temperature range 588-851 K and pressure range 0.01-0.22 MPa for all of the 14 rare earth elements Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. For these elements, thermodynamic functions of the reactions LnCl(3)(s) + (3)/(2)Al(2)Cl(6)(g) = LnAl(3)Cl(12)(g) were calculated from the measurements. Those for the radioelement Pm were smoothly interpolated. The results show Gd divergences from the standard enthalpies and standard entropies from LaAl(3)Cl(12) to LuAl(3)Cl(12).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...