Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
bioRxiv ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39282342

RESUMO

Macrophages are required for our body's development and tissue repair and protect against microbial attacks. We previously reported a crucial role for regulation of mRNA 3'-end cleavage and polyadenylation (C/P) in monocyte to macrophage differentiation. The CFIm25 subunit of the C/P complex showed a striking increase upon differentiation of monocytes with Phorbol Myristate Acetate, suggesting that it promotes this process. To test this hypothesis, CFIm25 was overexpressed in two different monocytic cell lines, followed by differentiation. Both cell lines showed a significant increase in macrophage characteristics and an earlier slowing of the cell cycle. In contrast, depletion of CFIm25 hindered differentiation. Cell cycle slowing upon CFIm25 overexpression was consistent with a greater decrease in the proliferation markers PCNA and cyclin D1, coupled with increased 3'UTR lengthening of cyclin D1 mRNA. Since choice of other poly(A) sites could be affected by manipulating CFIm25, we identified additional genes with altered use of poly(A) sites during differentiation and examined how this changed upon CFIm25 overexpression. The mRNAs of positive regulators of NF-κB signaling, TAB2 and TBL1XR1, and NFKB1, which encodes the NF-κB p50 precursor, underwent 3'UTR shortening that was associated with increased protein expression compared to the control. Cells overexpressing CFIm25 also showed elevated levels of phosphorylated NF-κB-p65 and the NF-κB targets p21, Bcl-XL, ICAM1 and TNF-α at an earlier time and greater resistance to NF-κB chemical inhibition. In conclusion, our study supports a model in which CFIm25 accelerates the monocyte to macrophage transition by promoting alternative polyadenylation events which lead to activation of the NF-κB pathway.

2.
Technol Health Care ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39302400

RESUMO

BACKGROUND: Perioperative depth monitoring techniques, such as electroencephalography bispectral index (BIS), entropy index, and auditory evoked potential, are commonly used to assess anesthesia depth. However, the influence of patient positioning changes, particularly in gynecological surgeries where a head-down position is often required, on the accuracy of these monitoring indices remains unexplored. OBJECTIVE: The aim of the our study was to observe the impact of patient position changes on the monitoring value of entropy and BIS to identify a more sensitive method of anaesthesia depth monitoring for gynaecological surgery patients. METHODS: We conducted a study involving 40 women undergoing general anesthesia, during which routine monitoring of vital signs, including electrocardiogram (ECG), heart rate (HR), noninvasive arterial blood pressure (NIBP), oxyhemoglobin saturation (SpO2), and end-expiratory carbon dioxide (PetCO2), was initiated. Entropy and BIS devices were affixed to the patients' foreheads after alcohol sterilization to record brain activity. Tracheal intubation was performed following anesthesia induction. Throughout anesthesia maintenance, the value of BIS and response entropy (RE) were monitored and maintained between 40 and 50 by adjusting the infusion rate of propofol and remifentanil with Target Controlled Infusion (TCI, Mintopharmacokinetics model). Dosing for infusion control utilized corrected weight (height-105). Data were recorded before and after position changes, including tilting the operating table to head-down positions of 15 and 25 degrees, returning to a supine position, and elevating the head to 15 and 25-degree angles. BIS and entropy values at different time points were compared between the groups. RESULTS: Both BIS and entropy values increased from supine to head-down position and decreased from supine to head-up position, with entropy changes preceding those of BIS. Heart rate increased after head-up and decreased after head-down, while mean blood pressure (MBP) exhibited the opposite effect on heart rate. Significant correlations were found between heart rate and BIS (correlation coefficient: -0.43) and RE (correlation coefficient: -0.416), as well as between MBP and BIS (correlation coefficient: 0.346) and RE (correlation coefficient: 0.384). CONCLUSION: Changes in patient position can significantly affect the value of RE and BIS, as changes in entropy occur earlier than changes in the BIS.

3.
Front Microbiol ; 15: 1447046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268536

RESUMO

Introduction: Gold nanoparticles (AuNPs) have been developed as treatment materials for various diseases and shown magnificent potential. By contrast to the broad toxicological studies on the single exposure (AuNPs), how the other health risks modulate the toxicological profile of AuNPs remains to be investigated. Plastics are among the most common health risks in daily life due to the broad utilization of plastic products. Therefore, in this study, we aimed to reveal the toxicological effects induced by co-exposure of gold nanorod (AuR) and polystyrene micro- and nano-plastics (hereinafter, referred to as AuRmPS and AuRnPS, respectively) in mice. Methods: Systematic biochemical characterizations were performed to investigate the hepatotoxicity, nephrotoxicity, neurotoxicity, inflammatory responses, alterations in gut microbiota induced by co-exposure, and to analyze the toxicological phenomena from the roles of reactive oxygen species and gut-organ axis. Results: It has been found that hepatotoxicity, nephrotoxicity, neurotoxicity, and inflammation were exacerbated in AuRnPS and AuRmPS, and gut microbiota composition was more severely altered in AuRnPS exposure. These results suggest the necessity of reducing plastics exposure in AuNPs-based therapies. Moreover, protection against the nano-sized plastic particles holds higher priority. Conclusion: These findings will facilitate the explorations of methods to reduce therapeutic toxicity and improve biosafety for specific treatments by referring to the orders of importance in protecting different organs.

4.
J Nanobiotechnology ; 22(1): 533, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223666

RESUMO

The poor prognosis of hepatocellular carcinoma (HCC) is still an urgent challenge to be solved worldwide. Hence, assembling drugs and targeted short peptides together to construct a novel medicine delivery strategy is crucial for targeted and synergy therapy of HCC. Herein, a high-efficiency nanomedicine delivery strategy has been constructed by combining graphdiyne oxide (GDYO) as a drug-loaded platform, specific peptide (SP94-PEG) as a spear to target HCC cells, sorafenib, doxorubicin-Fe2+ (DOX-Fe2+), and siRNA (SLC7A11-i) as weapons to exert a three-path synergistic attack against HCC cells. In this work, SP94-PEG and GDYO form nanosheets with HCC-targeting properties, the chemotherapeutic drug DOX linked to ferrous ions increases the free iron pool in HCC cells and synergizes with sorafenib to induce cell ferroptosis. As a key gene of ferroptosis, interference with the expression of SLC7A11 makes the ferroptosis effect in HCC cells easier, stronger, and more durable. Through gene interference, drug synergy, and short peptide targeting, the toxic side effects of chemotherapy drugs are reduced. The multifunctional nanomedicine GDYO@SP94/DOX-Fe2+/sorafenib/SLC7A11-i (MNMG) possesses the advantages of strong targeting, good stability, the ability to continuously induce tumor cell ferroptosis and has potential clinical application value, which is different from traditional drugs.


Assuntos
Carcinoma Hepatocelular , Doxorrubicina , Ferroptose , Neoplasias Hepáticas , Nanomedicina , Peptídeos , Sorafenibe , Ferroptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/química , Nanomedicina/métodos , Sorafenibe/farmacologia , Sorafenibe/química , Linhagem Celular Tumoral , Animais , Peptídeos/química , Peptídeos/farmacologia , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Sinergismo Farmacológico , Sistema y+ de Transporte de Aminoácidos/metabolismo , Camundongos Nus , RNA Interferente Pequeno , Camundongos Endogâmicos BALB C , Sistemas de Liberação de Medicamentos/métodos
5.
Int J Biol Macromol ; 278(Pt 4): 135033, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182861

RESUMO

The digestive characteristics of wheat starch are closely related to human health. However, the digestive mechanisms of distinct wheat starch granules are not well understood. To address this problem, A- and B-type wheat starch granules (AWS and BWS, respectively) were digested in vitro and the structural evolution of the digestive remnants was compared. After stomach-intestinal digestion of AWS, its crystallinity decreased from 12.75 % to 6.65 %, its fractal dimension decreased from 3.12 to 2.35, and the median particle size decreased from 20.613 to 10.135 µm. Additionally, the number of short chains (polymerization degree<14) and thermodynamic stability decreased after digestion. For BWS, Fourier transform infrared ratio of 1047/1022 cm-1 and 995/1022 cm-1 increased from 0.665 and 0.725 to 0.990 and 0.800, respectively. The median particle size decreased from 5.480 to 4.769 µm. An enzyme-resistant scattering peak was observed in the 1.35 nm-1 lamellar structure. Additionally, the number of B2 and B3 chains and the thermodynamic stability increased after digestion. Our study confirmed that BWS is more likely than AWS to form enzyme-resistant structures during digestion. These findings provide insights into the distinct digestion mechanisms of AWS and BWS, and serve as a foundation for modifying wheat starch to increase its nutritional value.


Assuntos
Digestão , Amido , Triticum , Triticum/química , Triticum/metabolismo , Amido/química , Amido/metabolismo , Tamanho da Partícula , Termodinâmica , Espectroscopia de Infravermelho com Transformada de Fourier , Humanos
6.
J Agric Food Chem ; 72(33): 18478-18488, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39106342

RESUMO

Fusarium crown and root rot (FCRR) has emerged as a highly destructive soil-borne disease, posing a significant threat to the safe cultivation of tomatoes in recent years. The pathogen of tomato FCRR is Fusarium oxysporum f. sp. radicis-lycopersici (Forl). To explore potential phytotoxins from Forl, eight undescribed diterpenoids namely fusariumic acids A-H (1-8) were isolated. Their structures were elucidated by using spectroscopic data analyses, quantum chemical calculations, and X-ray crystallography. Fusariumic acids A (1) and C-H (3-8) were typical isocassadiene-type diterpenoids, while fusariumic acid B (2) contained a cage-like structure with an unusual 7,8-seco-isocassadiene skeleton. A biosynthetic pathway of 2 was proposed. Fusariumic acids A (1) and C-H (3-8) were further assessed for their phytotoxic effects on tomato seedlings at 200 µg/mL. Among them, fusariumic acid F (6) exhibited the strongest inhibition against the hypocotyl and root elongation of tomato seedlings, with inhibitory rates of 61.3 and 45.3%, respectively.


Assuntos
Diterpenos , Fusarium , Doenças das Plantas , Raízes de Plantas , Solanum lycopersicum , Fusarium/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Diterpenos/química , Diterpenos/farmacologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/química , Estrutura Molecular
7.
Parasite ; 31: 51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39212528

RESUMO

Cryptosporidium is a globally distributed zoonotic protozoan parasite that can cause severe diarrhea in humans and animals. L-type lectins are carbohydrate-binding proteins involved in multiple pathways in animals and plants, including protein transportation, secretion, innate immunity, and the unfolded protein response signaling pathway. However, the biological function of the L-type lectins remains unknown in Cryptosporidium parvum. Here, we preliminarily characterized an L-type lectin in C. parvum (CpLTL) that contains a lectin-leg-like domain. Immunofluorescence assay confirmed that CpLTL is located on the wall of oocysts, the surface of the mid-anterior region of the sporozoite and the cytoplasm of merozoites. The involvement of CpLTL in parasite invasion is partly supported by experiments showing that an anti-CpLTL antibody could partially block the invasion of C. parvum sporozoites into host cells. Moreover, the recombinant CpLTL showed binding ability with mannose and the surface of host cells, and competitively inhibited the invasion of C. parvum. Two host cell proteins were identified by proteomics which should be prioritized for future validation of CpLTL-binding. Our data indicated that CpLTL is potentially involved in the adhesion and invasion of C. parvum.


Title: Une protéine mono-transmembranaire, lectine de type L spécifique du mannose, potentiellement impliquée dans l'adhésion et l'invasion de Cryptosporidium parvum. Abstract: Cryptosporidium est un parasite protozoaire zoonotique répandu dans le monde entier qui peut provoquer de graves diarrhées chez les humains et les animaux. Les lectines de type L sont des protéines liant les glucides impliquées dans de multiples voies chez les animaux et les plantes, notamment le transport des protéines, la sécrétion, l'immunité innée et la voie de signalisation de la réponse protéique dépliée. Cependant, la fonction biologique des lectines de type L reste inconnue chez Cryptosporidium parvum. Ici, nous avons caractérisé de manière préliminaire une lectine de type L chez C. parvum (CpLTL) qui contient un domaine de type jambe de lectine. Le test d'immunofluorescence a confirmé que CpLTL est localisée sur la paroi des oocystes, la surface de la région médio-antérieure du sporozoïte et le cytoplasme des mérozoïtes. L'implication de CpLTL dans l'invasion parasitaire est en partie étayée par des expériences montrant qu'un anticorps anti-CpLTL peut bloquer partiellement l'invasion des sporozoïtes de C. parvum dans les cellules hôtes. De plus, la CpLTL recombinante a montré une capacité de liaison avec le mannose et la surface des cellules hôtes et a inhibé de manière compétitive l'invasion de C. parvum. Deux protéines de cellules hôtes ont été identifiées par protéomique et devraient être prioritaires pour la validation future de la liaison avec CpLTL. Nos données indiquent que CpLTL est potentiellement impliquée dans l'adhésion et l'invasion de C. parvum.


Assuntos
Cryptosporidium parvum , Manose , Proteínas de Protozoários , Esporozoítos , Cryptosporidium parvum/fisiologia , Cryptosporidium parvum/metabolismo , Cryptosporidium parvum/genética , Esporozoítos/fisiologia , Esporozoítos/metabolismo , Animais , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Humanos , Manose/metabolismo , Oocistos/fisiologia , Criptosporidiose/parasitologia , Merozoítos/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Adesão Celular , Proteômica
8.
Commun Biol ; 7(1): 924, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085368

RESUMO

The microRNAs (miRNAs) of their hosts play an important role in regulating both the innate and adaptive immune responses to Cryptosporidium parvum infection. The mechanisms of autophagy and apoptosis are important components of the defense system against C. parvum infection. In this study, we investigate the role of miRNA-199a-3p in regulating MTOR-mediated autophagy and apoptosis in HCT-8 cells induced by C. parvum. The expression of miR-199a-3p increased at 3, 6 and 12 hours postinfection (hpi) but decreased at 24 and 48 hpi. The upregulation of miR-199a-3p promoted autophagy and apoptosis and limited the parasite burden in HCT-8 cells after C. parvum infection. The downregulation of miR-199a-3p inhibited the autophagy and apoptosis induced by C. parvum and enhanced the parasite burden in HCT-8 cells. A luciferase reporter showed that MTOR was a target gene of miR-199a-3p. Suppressed expression of MTOR by small interfering RNA (siRNA) promoted autophagy and apoptosis and limited C. parvum burden in HCT-8 cells. Co-transfection with miR-199a-3p inhibitor or si-mTOR revealed that miR-199a-3p regulates autophagy and apoptosis in HCT-8 cells through MTOR, to resist C. parvum infection. In conclusion, intestinal epithelial cells defend against C. parvum infection by regulating their autophagy and apoptosis through the miR-199a-3p-MTOR axis.


Assuntos
Apoptose , Autofagia , Criptosporidiose , Cryptosporidium parvum , MicroRNAs , Serina-Treonina Quinases TOR , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Autofagia/genética , Apoptose/genética , Cryptosporidium parvum/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Criptosporidiose/parasitologia , Criptosporidiose/genética , Linhagem Celular Tumoral
9.
Nature ; 631(8022): 826-834, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987597

RESUMO

Glutamate is traditionally viewed as the first messenger to activate NMDAR (N-methyl-D-aspartate receptor)-dependent cell death pathways in stroke1,2, but unsuccessful clinical trials with NMDAR antagonists implicate the engagement of other mechanisms3-7. Here we show that glutamate and its structural analogues, including NMDAR antagonist L-AP5 (also known as APV), robustly potentiate currents mediated by acid-sensing ion channels (ASICs) associated with acidosis-induced neurotoxicity in stroke4. Glutamate increases the affinity of ASICs for protons and their open probability, aggravating ischaemic neurotoxicity in both in vitro and in vivo models. Site-directed mutagenesis, structure-based modelling and functional assays reveal a bona fide glutamate-binding cavity in the extracellular domain of ASIC1a. Computational drug screening identified a small molecule, LK-2, that binds to this cavity and abolishes glutamate-dependent potentiation of ASIC currents but spares NMDARs. LK-2 reduces the infarct volume and improves sensorimotor recovery in a mouse model of ischaemic stroke, reminiscent of that seen in mice with Asic1a knockout or knockout of other cation channels4-7. We conclude that glutamate functions as a positive allosteric modulator for ASICs to exacerbate neurotoxicity, and preferential targeting of the glutamate-binding site on ASICs over that on NMDARs may be strategized for developing stroke therapeutics lacking the psychotic side effects of NMDAR antagonists.


Assuntos
Canais Iônicos Sensíveis a Ácido , Isquemia Encefálica , Ácido Glutâmico , Animais , Feminino , Humanos , Masculino , Camundongos , 2-Amino-5-fosfonovalerato/efeitos adversos , 2-Amino-5-fosfonovalerato/metabolismo , 2-Amino-5-fosfonovalerato/farmacologia , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/deficiência , Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação/genética , Isquemia Encefálica/induzido quimicamente , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Ácido Glutâmico/toxicidade , Camundongos Knockout , Mutagênese Sítio-Dirigida , Prótons , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo
10.
Nat Commun ; 15(1): 6362, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39069566

RESUMO

Autonomic nervous system disorders play a pivotal role in the pathophysiology of cardiovascular diseases. Regulating it is essential for preventing and treating acute ventricular arrhythmias (VAs). Photothermal neuromodulation is a nonimplanted technique, but the response temperature ranges of transient receptor potential vanilloid 1 (TRPV1) and TWIK-related K+ Channel 1 (TREK1) exhibit differences while being closely aligned, and the acute nature of VAs require that it must be rapid and precise. However, the low photothermal conversion efficiency (PCE) still poses limitations in achieving rapid and precise treatment. Here, we achieve a nearly perfect blackbody absorption and a high PCE in the second near infrared (NIR-II) window (73.7% at 1064 nm) via a Pt nanoparticle shell (PtNP-shell). By precisely manipulating the photothermal effect, we successfully achieve rapid and precise multimodal neuromodulation encompassing neural activation (41.0-42.9 °C) and inhibition (45.0-46.9 °C) in a male canine model. The NIR-II photothermal modulation additionally achieves multimodal reversible autonomic modulation and confers protection against acute VAs associated with myocardial ischemia and reperfusion injury in interventional therapy.


Assuntos
Arritmias Cardíacas , Raios Infravermelhos , Animais , Arritmias Cardíacas/terapia , Cães , Masculino , Raios Infravermelhos/uso terapêutico , Platina/química , Nanopartículas Metálicas/química , Terapia Fototérmica/métodos , Modelos Animais de Doenças
11.
Sci Rep ; 14(1): 16964, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043790

RESUMO

Obesity is characterized by dysregulated adipogenesis that leads to increased number and/or size of adipocytes. Understanding the molecular mechanisms governing adipogenesis is therefore key to designing therapeutic interventions against obesity. In our study, we analyzed 3'-end sequencing data that we generated from human preadipocytes and adipocytes, as well as previously published RNA-seq datasets, to elucidate mechanisms of regulation via long non-coding RNA (lncRNA), alternative splicing (AS) and alternative polyadenylation (APA). We discovered lncRNAs that have not been previously characterized but may be key regulators of white adipogenesis. We also detected 100 AS events and, using motif enrichment analysis, identified RNA binding proteins (RBPs) that could mediate exon skipping-the most prevalent AS event. In addition, we show that usage of alternative poly(A) sites in introns or 3'-UTRs of key adipogenesis genes leads to isoform diversity, which can have significant biological consequences on differentiation efficiency. We also identified RBPs that may modulate APA and defined how 3'-UTR APA can regulate gene expression through gain or loss of specific microRNA binding sites. Taken together, our bioinformatics-based analysis reveals potential therapeutic avenues for obesity through manipulation of lncRNA levels and the profile of mRNA isoforms via alternative splicing and polyadenylation.


Assuntos
Adipogenia , Processamento Alternativo , Perfilação da Expressão Gênica , Poliadenilação , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adipogenia/genética , Humanos , Adipócitos/metabolismo , Adipócitos/citologia , Regiões 3' não Traduzidas , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma , Regulação da Expressão Gênica , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Biologia Computacional/métodos
12.
Science ; 385(6705): 168-174, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38900912

RESUMO

Intercellular communication in the nervous system occurs through the release of neurotransmitters into the synaptic cleft between neurons. In the presynaptic neuron, the proton pumping vesicular- or vacuolar-type ATPase (V-ATPase) powers neurotransmitter loading into synaptic vesicles (SVs), with the V1 complex dissociating from the membrane region of the enzyme before exocytosis. We isolated SVs from rat brain using SidK, a V-ATPase-binding bacterial effector protein. Single-particle electron cryomicroscopy allowed high-resolution structure determination of V-ATPase within the native SV membrane. In the structure, regularly spaced cholesterol molecules decorate the enzyme's rotor and the abundant SV protein synaptophysin binds the complex stoichiometrically. ATP hydrolysis during vesicle loading results in a loss of the V1 region of V-ATPase from the SV membrane, suggesting that loading is sufficient to induce dissociation of the enzyme.


Assuntos
Vesículas Sinápticas , ATPases Vacuolares Próton-Translocadoras , Animais , Ratos , Proteínas de Bactérias/química , Encéfalo/ultraestrutura , Encéfalo/enzimologia , Colesterol/química , Microscopia Crioeletrônica , Hidrólise , Vesículas Sinápticas/enzimologia , Vesículas Sinápticas/ultraestrutura , Sinaptofisina/metabolismo , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/isolamento & purificação , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Conformação Proteica
13.
Sci Total Environ ; 946: 174218, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38914326

RESUMO

With the worsening indoor air quality in developing countries, more and more attention is being paid to indoor air pollution, especially formaldehyde and volatile organic compounds (VOCs) emitted from indoor building materials. A series of methods, such as the C-history method, have been proposed to determine the mechanistic parameters of formaldehyde and other VOC emissions. However, these methods require a relatively long test duration (at least 3 days) and may yield a multi-solution problem for these parameters. Therefore, we have developed a novel method, the two-parameter C-history method, to overcome these limitations by measuring the two early-stage emission characteristic parameters for formaldehyde/VOCs. The experimental results validate the accuracy of this method for different building materials and showed that the test duration can be substantially shortened to within 12 h. Based on this, we propose a new method to quickly predict the two emission characteristic parameters at different temperatures. We optimize the experimental parameters and discuss their influence to further improve accuracy. This method will be useful in engineering applications.

14.
Ann Med ; 56(1): 2329259, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38738380

RESUMO

Opioids are the most prescribed drugs for the alleviation of pain. Both clinical and preclinical studies have reported strong evidence for sex-related divergence regarding opioid analgesia. There is an increasing amount of evidence indicating that gonadal hormones regulate the analgesic efficacy of opioids. This review presents an overview of the importance of gonadal steroids in modulating opioid analgesic responsiveness and focuses on elaborating what is currently known regarding the underlyingmechanism. We sought to identify the link between gonadal hormones and the effect of oipiod antinociception.


Gonadal hormones contribute to the sexual dimorphism of opioid antinociception.Generally, oestradiol is a negative modulator of opioid analgesia via both non-genomic and genomic effects.Testosterone facilitates opioid analgesia mainly through the transcriptional activities of androgen receptors.Under normal physiological conditions, progestin and oestrogen exist in parallel and have a combined effect. However, progestin alone could promote opioid analgesia by increasing the expression of opioid receptors.


Assuntos
Analgésicos Opioides , Hormônios Gonadais , Dor , Analgésicos Opioides/farmacologia , Humanos , Animais , Hormônios Gonadais/metabolismo , Masculino , Dor/tratamento farmacológico , Dor/metabolismo , Feminino
15.
Cell Rep ; 43(5): 114173, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38700984

RESUMO

Mutations in the phosphatase and tensin homolog (PTEN) gene are associated with severe neurodevelopmental disorders. Loss of PTEN leads to hyperactivation of the mechanistic target of rapamycin (mTOR), which functions in two distinct protein complexes, mTORC1 and mTORC2. The downstream signaling mechanisms that contribute to PTEN mutant phenotypes are not well delineated. Here, we show that pluripotent stem cell-derived PTEN mutant human neurons, neural precursors, and cortical organoids recapitulate disease-relevant phenotypes, including hypertrophy, electrical hyperactivity, enhanced proliferation, and structural overgrowth. PTEN loss leads to simultaneous hyperactivation of mTORC1 and mTORC2. We dissect the contribution of mTORC1 and mTORC2 by generating double mutants of PTEN and RPTOR or RICTOR, respectively. Our results reveal that the synergistic hyperactivation of both mTORC1 and mTORC2 is essential for the PTEN mutant human neural phenotypes. Together, our findings provide insights into the molecular mechanisms that underlie PTEN-related neural disorders and highlight novel therapeutic targets.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Neurônios , Organoides , PTEN Fosfo-Hidrolase , Humanos , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Organoides/metabolismo , Neurônios/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Mutação/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Transdução de Sinais , Proliferação de Células , Proteína Regulatória Associada a mTOR/metabolismo , Proteína Regulatória Associada a mTOR/genética , Fenótipo
16.
Int J Biol Macromol ; 267(Pt 1): 131542, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608973

RESUMO

Hyaluronic acid (HA), as a multifunctional hydrophilic polysaccharide, is potentially beneficial in improving the thermal stability of fermented modified starches, but relevant insights at the molecular level are lacking. The aim of this study was to investigate the effect of different levels (0 %, 3 %, 6 %, 9 %, 12 % and 15 %) of HA on the structural, thermal and pasting properties of wheat starch co-fermented with Saccharomyces cerevisiae and Lactobacillus plantarum. We found that the addition of HA increased the median particle size of fermented starch granules from 16.387 to 17.070 µm. Meanwhile, the crystallinity of fermented starch was negatively correlated with the HA content, decreasing from 14.70 % to 12.80 % (p < 0.05). Fourier transform infrared spectroscopy results confirmed that HA interacted with starch granules and water molecules mainly through hydrogen bonding. Thermal analyses showed that the thermal peak of the composite correlated with the HA concentration, reaching a maximum of 73.17 °C at 12 % HA. In addition, HA increases the pasting temperature, reduces the peak, breakdown and setback viscosities of starch. This study demonstrates the role of HA in improving the thermal stability of fermented starch, providing new insights for traditional fermented food research and the application of HA in food processing.


Assuntos
Fermentação , Ácido Hialurônico , Lactobacillus plantarum , Saccharomyces cerevisiae , Amido , Triticum , Lactobacillus plantarum/metabolismo , Saccharomyces cerevisiae/metabolismo , Amido/química , Amido/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Triticum/química , Temperatura , Espectroscopia de Infravermelho com Transformada de Fourier , Viscosidade
17.
Nano Lett ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602471

RESUMO

Mimicking the function of human skin is highly desired for electronic skins (e-skins) to perceive the tactile stimuli by both their intensity and spatial location. The common strategy using pixelated pressure sensor arrays and display panels greatly increases the device complexity and compromises the portability of e-skins. Herein, we tackled this challenge by developing a user-interactive iontronic skin that simultaneously achieves electrical pressure sensing and on-site, nonpixelated pressure mapping visualization. By merging the electrochromic and iontronic pressure sensing units into an integrated multilayer device, the interlayer charge transfer is regulated by applied pressure, which induces both color shifting and a capacitance change. The iontronic skin could visualize the trajectory of dynamic forces and reveal both the intensity and spatial information on various human activities. The integration of dual-mode pressure responsivity, together with the scalable fabrication and explicit signal output, makes the iontronic skin highly promising in biosignal monitoring and human-machine interaction.

18.
Parasit Vectors ; 17(1): 146, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504274

RESUMO

BACKGROUND: Cryptosporidium parvum is an apicomplexan zoonotic parasite causing the diarrheal illness cryptosporidiosis in humans and animals. To invade the host intestinal epithelial cells, parasitic proteins expressed on the surface of sporozoites interact with host cells to facilitate the formation of parasitophorous vacuole for the parasite to reside and develop. The gp40 of C. parvum, named Cpgp40 and located on the surface of sporozoites, was proven to participate in the process of host cell invasion. METHODS: We utilized the purified Cpgp40 as a bait to obtain host cell proteins interacting with Cpgp40 through the glutathione S-transferase (GST) pull-down method. In vitro analysis, through bimolecular fluorescence complementation assay (BiFC) and coimmunoprecipitation (Co-IP), confirmed the solid interaction between Cpgp40 and ENO1. In addition, by using protein mutation and parasite infection rate analysis, it was demonstrated that ENO1 plays an important role in the C. parvum invasion of HCT-8 cells. RESULTS: To illustrate the functional activity of Cpgp40 interacting with host cells, we identified the alpha-enolase protein (ENO1) from HCT-8 cells, which showed direct interaction with Cpgp40. The mRNA level of ENO1 gene was significantly decreased at 3 and 24 h after C. parvum infection. Antibodies and siRNA specific to ENO1 showed the ability to neutralize C. parvum infection in vitro, which indicated the participation of ENO1 during the parasite invasion of HCT-8 cells. In addition, we further demonstrated that ENO1 protein was involved in the regulation of cytoplasmic matrix of HCT-8 cells during C. parvum invasion. Functional study of the protein mutation illustrated that ENO1 was also required for the endogenous development of C. parvum. CONCLUSIONS: In this study, we utilized the purified Cpgp40 as a bait to obtain host cell proteins ENO1 interacting with Cpgp40. Functional studies illustrated that the host cell protein ENO1 was involved in the regulation of tight junction and adherent junction proteins during C. parvum invasion and was required for endogenous development of C. parvum.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Humanos , Animais , Cryptosporidium parvum/genética , Criptosporidiose/parasitologia , Esporozoítos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Membrana/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas Supressoras de Tumor/metabolismo
20.
Environ Sci Pollut Res Int ; 31(3): 3815-3827, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38095791

RESUMO

We investigated the association between flavonoid intake and coronary artery disease (CAD) risk in older adults. Data were extracted from the National Health and Nutrition Examination Survey (age ≥ 70 years; 2007-2010 and 2017-2018; n = 2 417). The total flavonoid and flavonoid subclass intake was calculated using validated food frequency questionnaires. The association between flavonoid intake and CAD risk was examined using generalized linear models with restricted cubic spline models. After multivariate adjustment, anthocyanin intake was positively associated with CAD risk; no significant associations were observed between other flavonoid subcategories and endpoint outcomes. Anthocyanins exhibited a non-linear association with CAD risk, and threshold effect analysis showed an inflection point of 15.8 mg/day for anthocyanins. Per unit increase in anthocyanins, the odds of CAD on the left of the inflection point decreased by 2%, while the odds on the right increased by 35.8%. Excessive flavonoid intake may increase CAD risk in the older population.


Assuntos
Doença da Artéria Coronariana , Flavonoides , Humanos , Idoso , Flavonoides/análise , Antocianinas , Inquéritos Nutricionais , Doença da Artéria Coronariana/epidemiologia , Fatores de Risco , Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA