Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Bioresour Technol ; 403: 130764, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718903

RESUMO

Abundant renewable resource lignocellulosic biomass possesses tremendous potential for green biomanufacturing, while its efficient utilization by Yarrowia lipolytica, an attractive biochemical production host, is restricted since the presence of inhibitors furfural and acetic acid in lignocellulosic hydrolysate. Given deficient understanding of inherent interactions between inhibitors and cellular metabolism, sufficiently mining relevant genes is necessary. Herein, 14 novel gene targets were discovered using clustered regularly interspaced short palindromic repeats interference library in Y. lipolytica, achieving tolerance to 0.35 % (v/v) acetic acid (the highest concentration reported in Y. lipolytica), 4.8 mM furfural, or a combination of 2.4 mM furfural and 0.15 % (v/v) acetic acid. The tolerance mechanism might involve improvement of cell division and decrease of reactive oxygen species level. Transcriptional repression of effective gene targets still enabled tolerance when xylose was a carbon source. This work forms a robust foundation for improving microbial tolerance to lignocellulose-derived inhibitors and revealing underlying mechanism.

2.
Int J Food Microbiol ; 417: 110691, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38631283

RESUMO

The presence of Vibrio parahaemolyticus (Vp) in different production stages of seafood has generated negative impacts on both public health and the sustainability of the industry. To further better investigate the fitness of Vp at the phenotypical level, a great number of studies have been conducted in recent years using plate counting methods. In the meantime, with the increasing accessibility of the next generation sequencing and the advances in analytical chemistry techniques, omics-oriented biotechnologies have further advanced our knowledge in the survival and virulence mechanisms of Vp at various molecular levels. These observations provide insights to guide the development of novel prevention and control strategies and benefit the monitoring and mitigation of food safety risks associated with Vp contamination. To timely capture these recent advances, this review firstly summarizes the most recent phenotypical level studies and provide insights about the survival of Vp under important in vitro stresses and on aquatic products. After that, molecular survival mechanisms of Vp at transcriptomic and proteomic levels are summarized and discussed. Looking forward, other newer omics-biotechnology such as metabolomics and secretomics show great potential to be used for confirming the cellular responses of Vp. Powerful data mining tools from the field of machine learning and artificial intelligence, that can better utilize the omics data and solve complex problems in the processing, analysis, and interpretation of omics data, will further improve our mechanistic understanding of Vp.


Assuntos
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/patogenicidade , Vibrio parahaemolyticus/crescimento & desenvolvimento , Vibrio parahaemolyticus/metabolismo , Alimentos Marinhos/microbiologia , Proteômica , Virulência , Microbiologia de Alimentos , Humanos , Transcriptoma , Animais
3.
Antioxidants (Basel) ; 13(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38671879

RESUMO

The utilization of functional cling films presents a promising approach to alleviate post-harvest spoilage caused by microbial activity, oxidative metabolism, and moisture loss in agricultural products. To overcome the environmental problems of conventional packaging materials, in this study, we developed functional fruit and vegetable cling films based on glycidyltrimethylammonium chloride and rosemarinic acid cross-linked gelatin (RQ-GEL). The results indicate that the prepared RQ-GEL film possesses excellent UV light barrier properties and mechanical performance. RQ-GEL inhibited S. aureus and E. coli by 93.79% and 92.04%, respectively. DPPH and ABTS free radical scavenging activities were as high as 87.69% and 84.6%. In the cherry tomato preservation experiment, when compared to uncovered samples, the RQ-GEL group had a 29.77% reduction in weight loss and a significant 26.92% reduction in hardness. Meanwhile, the RQ-GEL group delays the decline of fruit total soluble solids and titratable acidity content, and prolongs the preservation period of cherry tomatoes. Hence, RQ-GEL cling film is poised to emerge as a promising packaging material for the post-harvest preservation of agricultural products.

4.
Microbiol Spectr ; 12(4): e0344823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38445872

RESUMO

Small sample sizes and loss of sequencing reads during the microbiome data preprocessing can limit the statistical power of differentiating fresh produce phenotypes and prevent the detection of important bacterial species associated with produce contamination or quality reduction. Here, we explored a machine learning-based k-mer hash analysis strategy to identify DNA signatures predictive of produce safety (PS) and produce quality (PQ) and compared it against the amplicon sequence variant (ASV) strategy that uses a typical denoising step and ASV-based taxonomy strategy. Random forest-based classifiers for PS and PQ using 7-mer hash data sets had significantly higher classification accuracy than those using the ASV data sets. We also demonstrated that the proposed combination of integrating multiple data sets and leveraging a 7-mer hash strategy leads to better classification performance for PS and PQ compared to the ASV method but presents lower PS classification accuracy compared to the feature-selected ASV-based taxonomy strategy. Due to the current limitation of generating taxonomy using the 7-mer hash strategy, the ASV-based taxonomy strategy with remarkably less computing time and memory usage is more efficient for PS and PQ classification and applicable for important taxa identification. Results generated from this study lay the foundation for future studies that wish and need to incorporate and/or compare different microbiome sequencing data sets for the application of machine learning in the area of microbial safety and quality of food. IMPORTANCE: Identification of generalizable indicators for produce safety (PS) and produce quality (PQ) improves the detection of produce contamination and quality decline. However, effective sequencing read loss during microbiome data preprocessing and the limited sample size of individual studies restrain statistical power to identify important features contributing to differentiating PS and PQ phenotypes. We applied machine learning-based models using individual and integrated k-mer hash and amplicon sequence variant (ASV) data sets for PS and PQ classification and evaluated their classification performance and found that random forest (RF)-based models using integrated 7-mer hash data sets achieved significantly higher PS and PQ classification accuracy. Due to the limitation of taxonomic analysis for the 7-mer hash, we also developed RF-based models using feature-selected ASV-based taxonomic data sets, which performed better PS classification than those using the integrated 7-mer hash data set. The RF feature selection method identified 480 PS indicators and 263 PQ indicators with a positive contribution to the PS and PQ classification.


Assuntos
Algoritmos , Microbiota , Microbiota/genética , Aprendizado de Máquina
5.
J Food Prot ; 87(4): 100255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423361

RESUMO

After finishing waxes are applied, citrus fruits are typically dried at 32-60°C for 2-3 min before final packing. The survival of Listeria monocytogenes, Salmonella, and Enterococcus faecium NRRL B-2354 was evaluated under laboratory conditions on lemons after applying one of four finishing waxes (F4, F6, F8, and F15) followed by an ambient hold or heated (50 or 60°C) drying step. The reduction of inoculated microorganisms during drying was significantly influenced by wax type and temperature, with greater reductions at higher temperatures. Greater reductions after waxing and drying at 60°C were observed with L. monocytogenes (2.84-4.44 log) than with Salmonella (1.65-3.67 log), and with Salmonella than with E. faecium (0.99-2.93 log). The survival of Salmonella inoculated at 5.8-5.9 log/fruit on lemons and oranges after applying wax F6 and drying at 60°C was evaluated during storage at 4 and 22°C. The reductions of Salmonella after waxing and drying were 1.7 log; additional reductions during storage at 4 or 22°C were 1.40-1.43 or 0.18-0.29 log, respectively, on waxed lemons, and 0.56-1.02 or 0.54-0.57 log, respectively, on waxed oranges. Under pilot-scale packinghouse conditions with wax F4, mean and minimum reductions of E. faecium ranged from 2.15 to 2.89 and 1.64 to 2.12 log, respectively. However, E. faecium was recovered by whole-fruit enrichment (limit of detection: 0.60 log CFU/lemon) but not by plating (LOD: 1.3 log CFU/lemon) from uninoculated lemons run with or after the inoculated lemons. The findings should provide useful information to establish and implement packinghouse food safety plans.


Assuntos
Citrus , Listeria monocytogenes , Frutas , Microbiologia de Alimentos , Salmonella , Temperatura , Ceras , Contagem de Colônia Microbiana
6.
J Food Sci ; 89(4): 1988-2000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372192

RESUMO

Romaine lettuce outer leaves, as opposed to the more commonly marketed heart, are typically discarded and present an opportunity for upcycling as dried powders. Duquesne Romaine lettuce was evaluated to quantify and compare quality attributes of fresh outer and heart leaves, dried powders following hot air drying, and dried powders following an infrared (IR) blanching pretreatment before drying. Attributes measured for fresh leaves included moisture, water activity (Aw), color, total soluble phenolics (TSP), and antioxidant capacity (AC). Drying kinetics and time/energy saving through IR blanching were evaluated. Attributes measured for dried powders included moisture, Aw, color, true density, water vapor isotherms, TSP, AC, cadmium (Cd) content, and pesticide residues. TSP, AC, Cd, and pesticide residues were higher, whereas moisture content and Aw were lower in fresh outer versus heart leaves. Hot air drying reduced TSP and AC to 63.6% and 35.2% of fresh values, respectively, whereas IR blanching further reduced TSP and AC to 37.3% and 25.4% in outer leave powders. On the other hand, TSP and AC increased 237% and 151%, respectively, for unblanched heart powders. Higher increase of TSP than AC in heart leaf powder may indicate synthesis of phenolic compounds activated by abiotic stresses such as cutting and high temperatures at the initial drying stage. IR blanching resulted in significant time/energy savings for drying of outer leaves. Microbial loads were substantially reduced during drying, although microbial population on outer leaves were more resistant. Safe to eat outer leaf Romaine lettuce powders can be produced, assuming appropriate agricultural practices.


Assuntos
Lactuca , Resíduos de Praguicidas , Cádmio/análise , Resíduos de Praguicidas/análise , Antioxidantes/química , Dessecação/métodos , Folhas de Planta/química
7.
Int J Food Microbiol ; 413: 110591, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306774

RESUMO

Microorganisms in processing environments significantly impact the quality and safety of food products and can serve as potential reservoirs for antibiotic-resistant genes, contributing to public health concerns about antimicrobial resistance (AMR). Fish processing plants represent an understudied environment for microbiome mapping. This study investigated the microbial composition, prevalence of Listeria spp., and resistome structures in three catfish processing facilities in the southeastern United States. The 16S rRNA gene sequencing revealed that the observed richness and Shannon diversity index increased significantly from fish to fillet. Beta diversity analysis showed distinct clustering of microbial communities between fish, environment, and fillet samples. Fast expectation-maximization microbial source tracking (FEAST) algorithm demonstrated that the microbiota presents in the processing environment contributed 48.2 %, 62.4 %, and 53.7 % to the microbiota present on fillet in Facility 1 (F1), F2, and F3, respectively. Food contact surfaces made larger contributions compared to the non-food contact surfaces. The linear discriminant analysis of effect size (LEfSe) identified specific microbial genera (e.g., Plesiomohas, Brochothrix, Chryseobacterium and Cetobacterium) that significantly varied between Listeria spp. positive and negative samples in all three processing plants. The metagenomic sequencing results identified 212 antimicrobial resistance genes (ARGs) belonging to 72 groups from the raw fish and fish fillet samples collected from three processing plants. Although there was a significant decrease in the overall diversity of ARGs from fish to fillet samples, the total abundance of ARGs did not change significantly (P > 0.05). ARGs associated with resistance to macrolide-lincosamide-streptogramin (MLS), cationic antimicrobial peptides, aminoglycosides, and beta-lactams were found to be enriched in the fillet samples when compared to fish samples. Results of this study highlight the profound impact of processing environment on shaping the microbial populations present on the final fish product and the need for additional strategies to mitigate AMR in fish products.


Assuntos
Antibacterianos , Microbiota , Animais , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Produtos Pesqueiros , Microbiota/genética , Genes Bacterianos , Peixes
8.
ACS Appl Bio Mater ; 7(3): 1842-1851, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38416807

RESUMO

The growing concerns regarding foodborne illnesses related to fresh produce accentuate the necessity for innovative material solutions, particularly on surfaces that come into close contact with foods. This study introduces a sustainable, efficient, and removable antimicrobial and antifouling coating ideally suited for hydrophobic food-contact surfaces such as low-density polyethylene (LDPE). Developed through a crosslinking reaction involving tannic acid, gelatin, and soy protein hydrolysate, these coatings exhibit proper stability in aqueous washing solutions and effectively combat bacterial contamination and prevent biofilm formation. The unique surface architecture promotes the formation of halamine structures, enhancing antimicrobial efficacy with a rapid contact killing effect and reducing microbial contamination by up to 5 log10 cfu·cm-2 against both Escherichia coli (Gram-negative) and Listeria innocua (Gram-positive). Notably, the coatings are designed for at least five recharging cycles under mild conditions (pH6, 20 ppm free active chlorine) and can be easily removed with hot water or steam to refresh the depositions. This removal process not only conveniently aligns with existing sanitation protocols in the fresh produce industry but also facilitates the complete eradication of potential developed biofilms, outperforming uncoated LDPE coupons. Overall, these coatings represent sustainable, cost-effective, and practical advancements in food safety and are promising candidates for widespread adoption in food processing environments.


Assuntos
Anti-Infecciosos , Incrustação Biológica , Polifenóis , Polietileno , Anti-Infecciosos/farmacologia , Povidona , Escherichia coli
9.
Microbiol Spectr ; 11(6): e0278323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962397

RESUMO

IMPORTANCE: Given the involvement of Vibrio parahaemolyticus (Vp) in a wide range of seafood outbreaks, a systematical characterization of Vp fitness and transcriptomic changes at temperatures of critical importance for seafood production and storage is needed. In this study, one of each virulent Vp strain (tdh+ and trh+) was tested. While no difference in survival behavior of the two virulent strains was observed at 10°C, the tdh+ strain had a faster growth rate than the trh+ strain at 30°C. Transcriptomic analysis showed that a significantly higher number of genes were upregulated at 30°C than at 10°C. The majority of differentially expressed genes of Vp at 30°C were annotated to functional categories supporting cellular growth. At 10°C, the downregulation of the biofilm formation and histidine metabolism indicates that the current practice of storing seafood at low temperatures not only protects seafood quality but also ensures seafood safety.


Assuntos
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Temperatura , Frutos do Mar , Alimentos Marinhos , Perfilação da Expressão Gênica , Água do Mar
10.
Food Microbiol ; 115: 104339, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567640

RESUMO

To prolong cold storage, diluted storage waxes are applied to washed lemons after harvest and before packing, without drying steps, to reduce premature rotting and water loss. The survival of Listeria monocytogenes and Salmonella in undiluted and diluted storage waxes (S1-S4), and on lemon surfaces under common commercial storage were investigated. Populations of L. monocytogenes declined more slowly than Salmonella in undiluted storage waxes over 24 h of storage at 4 or 22 °C. L. monocytogenes (inoculated at ∼6 log CFU/mL) was detected by enrichment in undiluted waxes S2, S3, and S4 after 75-135 days at 4 °C but not after 30, 10, or 105 days, respectively at 22 °C. L. monocytogenes survived better in diluted than in undiluted storage waxes at 22 °C. Populations of L. monocytogenes (∼6 log CFU/lemon) declined by 0.64-1.62 log on lemon surfaces right after waxing. Populations of L. monocytogenes decreased to <1.30 log CFU/lemon after 28 days (1:9 S1) or 75 days (other treatments) at 12 °C and ≥93% RH. Except for 1:9 S1, L. monocytogenes was detected by enrichment in all lemon samples over 87 days of storage. Packinghouses should consider the survival of L. monocytogenes and Salmonella in citrus storage waxes in their food safety programs.


Assuntos
Citrus , Escherichia coli O157 , Listeria monocytogenes , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Salmonella , Temperatura , Manipulação de Alimentos
11.
ACS Appl Mater Interfaces ; 15(28): 34087-34096, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37428710

RESUMO

A novel reusable, plastic-free, and stable cooling medium, Jelly Ice Cubes (JIC), is developed based on crosslinked gelatin hydrogels for sustainable temperature control. A novel process involving a rapid-freezing-slow-thawing treatment and a subsequent photo-crosslinking reaction induced by menadione sodium bisulfite, a newly discovered photosensitizer, is able to effectively consolidate a three-dimensional (3-D) hydrogel network to survive repeated application freeze-thaw cycles (AFTCs). This study reveals the mechanisms and evidence of the synergistic effects of the physical and chemical crosslinking reactions. The results experimentally prove that the rapid-freezing-slow-thawing treatment induces the generation of gelatin microcrystalline domains, refines the protein polymeric network, and reduces the intervening distance for subsequent photo-crosslinking sites. The refined hydrogel 3-D network is consolidated by the photo-crosslinking reaction occurring at the intersectional areas of the gelatin microcrystalline domains. The proposed crosslinking approach yields JICs with superior mechanical properties, robustness, and consistent water content, even after repeated AFTCs, all the while retaining cooling efficiency and biodegradability. The proposed crosslinked hydrogel structure is potentially applicable to engineering other hydrogel materials, offering sustainble and biodegradable solutions with enhanced resilience against phase changes.

12.
Biotechnol Bioeng ; 120(10): 3013-3024, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37306471

RESUMO

The limited supply of reducing power restricts the efficient utilization of acetate in Yarrowia lipolytica. Here, microbial electrosynthesis (MES) system, enabling direct conversion of inward electrons to NAD(P)H, was used to improve the production of fatty alcohols from acetate based on pathway engineering. First, the conversion efficiency of acetate to acetyl-CoA was reinforced by heterogenous expression of ackA-pta genes. Second, a small amount of glucose was used as cosubstrate to activate the pentose phosphate pathway and promote intracellular reducing cofactors synthesis. Third, through the employment of MES system, the final fatty alcohols production of the engineered strain YLFL-11 reached 83.8 mg/g dry cell weight (DCW), which was 6.17-fold higher than the initial production of YLFL-2 in shake flask. Furthermore, these strategies were also applied for the elevation of lupeol and betulinic acid synthesis from acetate in Y. lipolytica, demonstrating that our work provides a practical solution for cofactor supply and the assimilation of inferior carbon sources.


Assuntos
Engenharia Metabólica , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Fermentação , Triterpenos Pentacíclicos/metabolismo , Acetatos/metabolismo
13.
Int J Food Microbiol ; 390: 110106, 2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-36753793

RESUMO

Persisters are a subpopulation of growth-arrested cells that possess transient tolerance to lethal doses of antibiotics and can revert to an active state under the right conditions. Persister cells are considered as a public health concern. This study examined the formation of persisters by Listeria monocytogenes (LM) in an environment simulating a processing plant for leafy green production. Three LM strains isolated from California produce-processing plants and packinghouses with the strongest adherence abilities were used for this study. The impact of the cells' physiological status, density, and nutrient availability on the formation of persisters was also determined. Gentamicin at a dose of 100 mg/L was used for the isolation and screening of LM persisters. Results showed that the physiological status differences brought by culture preparation methods (plate-grown vs. broth-grown) did not impact persister formation (P > 0.05). Instead, higher persister ratios were found when cell density increased (P < 0.05). The formation of LM persister cells under simulated packinghouse conditions was tested by artificially inoculating stainless steel coupons with LM suspending in media with decreasing nutrient levels: brain heart infusion broth (1366 mg/L O2), produce-washing water with various organic loads (1332 mg/L O2 and 652 mg/L O2, respectively), as well as sterile Milli-Q water. LM survived in all suspensions at 4 °C with 85 % relative humidity for 7 days, with strain 483 producing the most persister cells (4.36 ± 0.294 Log CFU/coupon) on average. Although persister cell levels of LM 480 and 485 were reasonably steady in nutrient-rich media (i.e., BHI and HCOD), they declined in nutrient-poor media (i.e., LCOD and sterile Milli-Q water) over time. Persister populations decreased along with total viable cells, demonstrating the impact of available nutrients on the formation of persisters. The chlorine sensitivity of LM persister cells was evaluated and compared with regular LM cells. Results showed that, despite their increased tolerance to the antibiotic gentamicin, LM persisters were more susceptible to chlorine treatments (100 mg/L for 2 min) than regular cells.


Assuntos
Listeria monocytogenes , Cloro , Antibacterianos/farmacologia , Gentamicinas/farmacologia
14.
Food Res Int ; 164: 112408, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737989

RESUMO

To better understand the microbial quality and safety of plant-based meat analogues, this study investigated the changes of native microflora present in soy- and pea-based meat analogues (SBM and PBM) and compared them with ground beef (GB). SBM, PBM, and GB were also artificially inoculated with meat spoilage microorganisms, Pseudomonas fluorescens and Brochothrix thermosphacta, and pathogenic microorganisms, Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes; the fitness of these bacteria was evaluated during storage at refrigerated and/or abused temperatures. Results showed that the initial total aerobic plate count (APC), coliform, lactic acid bacteria (LAB), and mold/yeast (M/Y) counts for GB could be as high as 5.44, 2.90, 4.61, and 3.45 log CFU/g, while the highest initial APC, coliform, LAB, and M/Y counts found in SBM were 3.10, 2.00, 2.04, and 1.95 log CFU/g, and were 3.82, 2.51, 3.61, and 1.44 log CFU/g for PBM. The batch-to-batch differences in microbial counts were more significant in GB than in SBM and PBM. Despite the different initial concentrations, there was no difference among APC and LAB counts between the three meat types by the end of the 10-day 4 °C storage period, all approaching ca. 7.00 log CFU/g. Artificially-inoculated B. thermosphacta increased by 0.76, 1.58, and 0.96 log CFU/g in GB, PBM, and SBM respectively by the end of the refrigeration storage; P. fluorescens increased by 4.92, 3.00, and 0.40 log CFU/g in GB, PBM, and SBM respectively. Under refrigerated storage conditions, pathogenic bacteria did not change in GB and SBM. L. monocytogenes increased by 0.74 log in PBM during the 7-day storage at 4 °C. All three pathogens grew at abused storage temperatures, regardless of the meat type. Results indicated that plant-based meat could support the survival and even growth of spoilage and pathogenic microorganisms. Preventive controls are needed for ensuring the microbial quality and safety of plant-based meat analogues.


Assuntos
Produtos da Carne , Pseudomonas fluorescens , Animais , Bovinos , Produtos da Carne/microbiologia , Microbiologia de Alimentos , Carne/microbiologia , Salmonella
15.
Curr Opin Biotechnol ; 80: 102912, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841150

RESUMO

Global production of dried fruits has increased significantly in the past decade. Both the increased consumer acceptance of nutritious packaged food and the broad use of dried fruits in products such as confectionery and bakery goods have fueled the dried fruit demand. Unfortunately, outbreaks and recalls due to contamination by pathogenic bacteria and viruses as well as the detection of mycotoxins highlight the need for optimizing current approaches, and evaluating and adopting newer interventions to protect the microbial and chemical safety of dried fruits. Drying processes alone are inadequate to control these hazards. Pre- and post-drying treatments serve as promising opportunities, with or without combination with the drying step, to achieve the goals of efficient hazard control.


Assuntos
Micotoxinas , Vírus , Frutas/química , Frutas/microbiologia , Micotoxinas/análise , Bactérias
16.
Microbiol Res ; 269: 127301, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36689842

RESUMO

Aeromonas hydrophila (Ah) is a zoonotic pathogen of great importance to aquaculture and human health. This study systematically evaluated the impact of salinity, sugar, ammonia nitrogen, and nitric nitrogen levels on the fitness of Ah by using Luria-Bertani (LB) broth supplemented with different concentrations of NaCl, sucrose, NH4Cl, urea, NaNO2 or NaNO3. Results showed that the static biofilm formation of Ah was higher at 28 °C compared to 37 °C (P < 0.05). At 28 °C, as the NaCl (>1 %) and sucrose levels increased, the Ah biofilm formation and the binding between Ah cells and monoclonal antibodies (mAbs, for immunodetection) decreased. Elevated ammonia nitrogen and nitric nitrogen levels generated no significant impact on Ah biofilm formation or immunodetection (P > 0.05). The expression of mAbs-targeted Omp remained unchanged under high NaCl or sucrose conditions. Further analysis showed that high sucrose conditions led to the over-expression of the extracellular polysaccharides (PS) and promoted the formation of capsule-like structures. These over-expressed PS and capsule structures might be one reason explaining the inhibited immunodetection efficacy. Results generated from this study provide crucial insights for the design of recovery and detection protocols for Ah present in food or environmental samples.


Assuntos
Aeromonas hydrophila , Cloreto de Sódio , Humanos , Pressão Osmótica , Cloreto de Sódio/metabolismo , Amônia/metabolismo , Biofilmes , Sacarose/metabolismo
17.
Curr Opin Biotechnol ; 80: 102895, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36689852

RESUMO

There are a number of opportunities for reducing loss and waste, and extending shelf life of fresh produce that go beyond cold chain optimization. For example, plant genotype (including ripening-related genes), presence of phytopathogens, maturity at harvest, and environmental conditions close to the harvest time, storage conditions, and postharvest treatments (washing, cutting, and waxing) all impact both shelf life of produce and food safety outcomes. Therefore, loss can be reduced and shelf life of fresh produce can be extended with plant breeding to manipulate ripening-related traits, or with pre- and postharvest treatments delaying senescence and decay. Food safety considerations of these applications are discussed.


Assuntos
Frutas , Verduras , Verduras/microbiologia , Frutas/genética , Microbiologia de Alimentos , Inocuidade dos Alimentos , Expectativa de Vida , Conservação de Alimentos
18.
Int J Biol Macromol ; 225: 112-122, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36513176

RESUMO

This study explored the effect of erythrosine B (EB) as a photosensitizer in corn starch (CS) film and its physicochemical properties and photodynamic bacteriostatic ability against Staphylococcus aureus, Escherichia coli, and Salmonella both in vitro and inoculated on pork under the irradiation of D65 light-emitting diode (LED) (400-800 nm). The study revealed that the physiochemical properties of CS films: moisture content, water solubility, and water vapor transmission were improved with the addition of EB. In addition, the elasticity and the thermal stability of the film were enhanced. The results showed that the CS-EB films stimulated a maximum of 26.36 µg/mL hydrogen peroxide and 74.5 µg/g hydroxyl radical under irradiation. The CS composite films with a 5 % concentration of EB inhibited the bacterial growth by 4.7 Log CFU/mL in vitro after 30 min of illumination, and 2.4 Log CFU/mL on the pork samples under the same experimental condition. Moreover, the antibacterial ability was enhanced with the increase in EB concentration. Overall, the CS-EB composite films can inhibit the growth of bacteria through photodynamic inactivation and has the potential to become a new type of environmentally friendly packaging material.


Assuntos
Carne de Porco , Carne Vermelha , Suínos , Animais , Eritrosina/farmacologia , Zea mays , Amido/química , Embalagem de Alimentos/métodos
19.
Food Chem ; 399: 133989, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041337

RESUMO

To characterize the involvement of microorganisms in amino acid degradation and fish quality deterioration, three major grass carp spoilage bacteria were artificially inoculated in amino acid solutions (in-vitro) and grass carp flesh (in-situ). Results showed that Pseudomonas putida largely degraded free amino acids and produced 3.78 mM/100 g ammonia in grass carp flesh, relying on its high amino acid deamination1 activity. Aeromonas rivipollensis produced 3-Methyl-butanol and 2-Methyl-butanol through leucine and isoleucine degradation. Shewanella putrefaciens had potent ornithine-decarboxylation activity (423.91 × 10-9 µg/CFU) and released 22.98 mg/kg putrescine in situ. S. putrefaciens could produce more putrescine when cooperating with P. putida through the arginine deiminase pathway. To conclude, the biochemical activities identified through in-vitro tests correlated well with quality changes in inoculated grass carp flesh. The outcomes of this study provided fundamental information on the spoilage mechanisms of freshwater fish and important guidance for the development of quality control strategies.


Assuntos
Carpas , Contaminação de Alimentos , Alimentos Marinhos , Shewanella putrefaciens , Aminoácidos , Animais , Butanóis , Proteínas de Peixes , Putrescina , Alimentos Marinhos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...