Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 9439, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676401

RESUMO

Aconitum episcopale Leveille is an important medicinal plant from the genus Aconitum L. of Ranunculaceae family and has been used as conventional medicine in Bai, Yi, and other ethnic groups of China. According to the available data and Ethno folk applications, A. episcopale is the only Aconitum species that has detoxifying and antialcoholic property. It can detoxify opium, especially the poisoning of Aconitum plants. Aconitum species have been widely used for their medicinal properties, and it is important to be noted that many of the species of this plant are reported to be toxic also. Distinguishing the species of this plant based on the morphology is a tough task and there are also no significant differences in the chemical composition. Therefore, before application of this plant for medicinal usage, it is very important to identify the species which could be life-threatening and exclude them. In this paper, the complete chloroplast (cp) genome sequence of A. episcopale was acquired by Illumina paired-end (PE) sequencing technology and compared with other species in the same family and genus. Herein, we report the complete cp genome of A. episcopale. The whole circular cp genome of A. episcopale has been found to be of 155,827 bp in size and contains a large single-copy region (LSC) of 86,452 bp, a small single-copy region (SSC) of 16,939 bp, and two inverted repeat regions (IRs) of 26,218 bp. The A. episcopale cp genome was found to be comprised of 132 genes, including 85 protein-coding genes (PCGs), 37 transfer RNA genes (tRNAs), eight ribosomal RNA genes (rRNAs), and two pseudogenes. A total of 20 genes contained introns, of which 14 genes contained a single intron and two genes had two introns. The chloroplast genome of A. episcopale contained 64 codons encoding 20 amino acids, with the number of codons encoding corresponding amino acids ranging from 22 to 1068. The Met and Trp amino acids have only one codon, and other amino acids had 2-6 codons. A total of 64 simple sequence repeats (SSRs) were identified, among which mononucleotide sequences accounted for the most. Phylogenetic analysis showed that A. episcopale is closely related with A. delavayi. Cumulatively the results of this study provided an essential theoretical basis for the molecular identification and phylogeny of A. episcopale.


Assuntos
Aconitum , Genoma de Cloroplastos , Aconitum/genética , Aminoácidos/genética , Códon , Filogenia , RNA de Transferência/genética
2.
Front Genet ; 13: 878182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711937

RESUMO

Aconitum is an important medicinal group of the Ranunculaceae family and has been used as conventional medicine in Bai, Yi, and other ethnic groups of China. There are about 350 Aconitum species globally and about 170 species in China. It is challenging to identify the species in morphology, and the lack of molecular biology information hinders the identification and rational utilization of the germplasm of this genus. Therefore, it is necessary to increase the molecular data of Aconitum species. This paper acquired the complete chloroplast (CP) genome sequence of ten medicinal plants of Aconitum species from Yunnan by Illumina paired-end (PE) sequencing technology and compared it with other species in the same family and genus. These CP genomes exhibited typical circular quadripartite structure, and their sizes ranged from 155,475 (A. stylosum) to 155,921 bp (A. vilmoinianum), including a large single-copy region (LSC), a small single-copy region (SSC), and two inverted repeat regions (IRs). Their gene content, order, and GC content (38.1%) were similar. Moreover, their number of genes ranged from 129 (A. vilmoinianum) to 132 (A. ramulosum), including 83 to 85 protein-coding genes (PCGs), 37 tRNA genes (tRNAs), eight rRNA genes (rRNAs), and two pseudogenes. In addition, we performed repeated sequence analysis, genomic structure, and comparative analysis using 42 Aconitum chloroplast genomes, including ten Aconitum chloroplast genomes and other sequenced Aconitum species. A total of 48-79 simple sequence repeats (SSRs) and 17 to 77 long repeat sequences were identified. IR regions showed higher variability than the SSC region and LSC region. Seven mutational hotspots were screened out, including trnK-UUU-trnQ-UGG, psbD, ndhJ-ndhK, clpP, psbH-petB, ycf1, and trnA-UGC-trnI-GAU, respectively. The phylogenetic trees of ten Aconitum species and other Aconitum species revealed that the complete CP genome was beneficial in determining the complex phylogenetic relationships among Aconitum species. This study provides a potential molecular marker and genomic resource for phylogeny and species identification of Aconitum species and an important reference and basis for Ranunculaceae species identification and phylogeny.

3.
J Med Chem ; 65(5): 4156-4181, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35175762

RESUMO

Our previous work found that the clinical histone deacetylase (HDAC) inhibitor quisinostat exhibited a significant antimalarial effect but with severe toxicity. In this work, 35 novel derivatives were designed and synthesized based on quisinostat as the lead compound, and their in vitro antimalarial activities and cytotoxicities were systematically evaluated. Among them, JX35 showed potent inhibition against both wild-type and multidrug-resistant parasite strains and displayed a significant in vivo killing effect against all life cycles of parasites, including the blood stage, liver stage, and gametocyte stage, indicating its potential for the simultaneous treatment, chemoprevention, and blockage of malaria transmission. Compared with quisinostat, JX35 exhibited stronger antimalarial efficacy, more adequate safety, and good pharmacokinetic properties. Additionally, mechanistic studies via molecular docking studies, induced PfHDAC1/2 knockdown assays, and PfHDAC1 enzyme inhibition assays jointly indicated that the antimalarial target of JX35 was PfHDAC1. In summary, we discovered the promising candidate PfHDAC1 inhibitor JX35, which showed stronger triple-stage antimalarial effects and lower toxicity than quisinostat.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Antimaláricos/uso terapêutico , Reposicionamento de Medicamentos , Antagonistas do Ácido Fólico/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos , Simulação de Acoplamento Molecular , Plasmodium falciparum
4.
J Chem Inf Model ; 62(21): 5223-5232, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34151561

RESUMO

Combination drugs, characterized by high efficacy and few side effects, have received extensive attention from pharmaceutical companies and researchers for the treatment of complex diseases such as heart failure (HF). Traditional combination drug discovery depends on large-scale high-throughput experimental approaches that are time-consuming and costly. Herein we developed a novel, rapid, and potentially universal computer-guided combination drug-network-screening approach based on a set of databases and web services that are easy for individuals to obtain and operate, and we discovered for the first time that the menthol-allethrin combination screened by this approach exhibited a significant synergistic cardioprotective effect in vitro. Further mechanistic studies indicated that allethrin and menthol could synergistically block calcium channels. Allethrin bound to the central cavity of the voltage-dependent L-type calcium channel subunit alpha-1S (CACNA1S) lead to a conformational change in an allosteric site of CACNA1S, thereby enhancing the binding of menthol to this allosteric site. In summary, we reported a potentially universal computational approach to combination drug screening that has been used to discover a new combination of menthol-allethrin against HF in vitro, providing a new synergistic mechanism and prospective agent for HF treatment.


Assuntos
Aletrinas , Insuficiência Cardíaca , Humanos , Mentol/farmacologia , Reposicionamento de Medicamentos , Estudos Prospectivos , Insuficiência Cardíaca/tratamento farmacológico
5.
J Med Chem ; 64(4): 2254-2271, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33541085

RESUMO

Previously, we identified the clinical anticancer drug candidate quisinostat as a novel and potent antimalarial lead compound. To further enhance the antimalarial effect and improve safety, 31 novel spirocyclic hydroxamic acid derivatives were synthesized based on the structure of quisinostat, and their antimalarial activities and cytotoxicity were evaluated. Among them, compound 11 displayed broad potency in vitro against several multiresistant malarial parasites, especially two artemisinin-resistant clinical isolates. Moreover, 11 could eliminate both liver and erythrocytic parasites in vivo, kill all morphological erythrocytic parasites with specific potency against schizonts, and show acceptable metabolic stability and pharmacokinetic properties. Western blot analysis, PfHDAC gene knockdown, and enzymatic inhibition experiments collectively confirmed that PfHDAC1 was the target of 11. In summary, 11 is a structurally novel PfHDAC1 inhibitor with the potential to prevent and cure malaria, overcome multidrug resistance, and provide a prospective prototype for antimalarial drug research.


Assuntos
Antimaláricos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/síntese química , Antimaláricos/metabolismo , Antimaláricos/farmacocinética , Desenho de Fármacos , Reposicionamento de Medicamentos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Estabilidade de Medicamentos , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacocinética , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacocinética , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade
6.
Brief Bioinform ; 22(2): 2058-2072, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-32221552

RESUMO

Drug discovery and development is a time-consuming and costly process. Therefore, drug repositioning has become an effective approach to address the issues by identifying new therapeutic or pharmacological actions for existing drugs. The drug's anatomical therapeutic chemical (ATC) code is a hierarchical classification system categorized as five levels according to the organs or systems that drugs act and the pharmacology, therapeutic and chemical properties of drugs. The 2nd-, 3rd- and 4th-level ATC codes reserved the therapeutic and pharmacological information of drugs. With the hypothesis that drugs with similar structures or targets would possess similar ATC codes, we exploited a network-based approach to predict the 2nd-, 3rd- and 4th-level ATC codes by constructing substructure drug-ATC (SD-ATC), target drug-ATC (TD-ATC) and Substructure&Target drug-ATC (STD-ATC) networks. After 10-fold cross validation and two external validations, the STD-ATC models outperformed the SD-ATC and TD-ATC ones. Furthermore, with KR as fingerprint, the STD-ATC model was identified as the optimal model with AUC values at 0.899 ± 0.015, 0.916 and 0.893 for 10-fold cross validation, external validation set 1 and external validation set 2, respectively. To illustrate the predictive capability of the STD-ATC model with KR fingerprint, as a case study, we predicted 25 FDA-approved drugs (22 drugs were actually purchased) to have potential activities on heart failure using that model. Experiments in vitro confirmed that 8 of the 22 old drugs have shown mild to potent cardioprotective activities on both hypoxia model and oxygen-glucose deprivation model, which demonstrated that our STD-ATC prediction model would be an effective tool for drug repositioning.


Assuntos
Reposicionamento de Medicamentos , Preparações Farmacêuticas , Linhagem Celular , Sistemas de Liberação de Medicamentos , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Reprodutibilidade dos Testes
7.
Cell Discov ; 6(1): 93, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311461

RESUMO

Although artemisinin combination therapies have succeeded in reducing the global burden of malaria, multidrug resistance of the deadliest malaria parasite, Plasmodium falciparum, is emerging worldwide. Innovative antimalarial drugs that kill all life-cycle stages of malaria parasites are urgently needed. Here, we report the discovery of the compound JX21108 with broad antiplasmodial activity against multiple life-cycle stages of malaria parasites. JX21108 was developed from chemical optimization of quisinostat, a histone deacetylase inhibitor. We identified P. falciparum histone deacetylase 1 (PfHDAC1), an epigenetic regulator essential for parasite growth and invasion, as a molecular target of JX21108. PfHDAC1 knockdown leads to the downregulation of essential parasite genes, which is highly consistent with the transcriptomic changes induced by JX21108 treatment. Collectively, our data support that PfHDAC1 is a potential drug target for overcoming multidrug resistance and that JX21108 treats malaria and blocks parasite transmission simultaneously.

8.
J Med Chem ; 63(3): 1051-1067, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31910018

RESUMO

Our previous study had identified ciclopirox (CPX) as a promising lead compound for treatment of ischemic stroke. To find better neuroprotective agents, a series of N-hydroxypyridone derivatives based on CPX were designed, synthesized, and evaluated in this study. Among these derivatives, compound 11 exhibits significant neuroprotection against oxygen glucose deprivation and oxidative stress-induced injuries in neuronal cells. Moreover, compound 11 possesses good blood-brain barrier permeability and superior antioxidant capability. In addition, a complex of compound 11 with olamine-11·Ola possesses good water solubility, negligible hERG inhibition, and superior metabolic stability. The in vivo experiment demonstrates that 11·Ola significantly reduces brain infarction and alleviates neurological deficits in middle cerebral artery occlusion rats. Hence, compound 11·Ola is identified in our research as a prospective prototype in the innovation of stroke treatment.


Assuntos
Ciclopirox/análogos & derivados , Ciclopirox/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Antioxidantes/síntese química , Antioxidantes/uso terapêutico , Antioxidantes/toxicidade , Apoptose/efeitos dos fármacos , Encéfalo/patologia , Linhagem Celular Tumoral , Ciclopirox/toxicidade , Desenho de Fármacos , Humanos , Infarto da Artéria Cerebral Média/patologia , Masculino , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/toxicidade , Ratos Sprague-Dawley , Relação Estrutura-Atividade
9.
ACS Chem Neurosci ; 9(7): 1625-1636, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29616790

RESUMO

On the basis of the drug-repositioning and redeveloping strategy, first-generation dual-target inhibitors of acetylcholinesterase (AChE) and phosphodiesterase 5 (PDE5) have been recently reported as a potentially novel therapeutic method for the treatment of Alzheimer's disease (AD), and the lead compound 2 has proven this method was feasible in AD mouse models. In this study, our work focused on exploring alternative novel tadalafil derivatives (3a-s). Among the 19 analogues, compound 3c exhibited good selective dual-target AChE/PDE5 inhibition and good blood-brain barrier (BBB) permeability. Moreover, its citrate (3c·Cit) possessed improved water solubility and good effects against scopolamine-induced cognitive impairment with inhibition of cortical AChE activities and enhancement of cAMP response element-binding protein (CREB) phosphorylation ex vivo.


Assuntos
Inibidores da Colinesterase/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Inibidores da Fosfodiesterase 5/farmacologia , Tadalafila/análogos & derivados , Acetilcolinesterase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacocinética , Disfunção Cognitiva/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos ICR , Estrutura Molecular , Inibidores da Fosfodiesterase 5/química , Inibidores da Fosfodiesterase 5/farmacocinética , Distribuição Aleatória , Escopolamina
10.
ACS Med Chem Lett ; 9(3): 233-237, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29541366

RESUMO

Diapophytoene desaturase (CrtN) is a potential novel target for intervening in the biosynthesis of the virulence factor staphyloxanthin. In this study, 38 1,4-benzodioxan-derived CrtN inhibitors were designed and synthesized to overwhelm the defects of leading compound 4a. Derivative 47 displayed superior pigment inhibitory activity, better hERG inhibitory properties and water solubility, and significantly sensitized MRSA strains to immune clearance in vitro. Notably, 47 displayed excellent efficacy against pigmented S. aureus Newman, Mu50 (vancomycin-intermediate MRSA, VISA), and NRS271 (linezolid-resistant MRSA, LRSA) comparable to that of linezolid and vancomycin in vivo.

11.
Eur J Med Chem ; 145: 235-251, 2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29328999

RESUMO

Inhibition of S. aureus diapophytoene desaturase (CrtN) could serve as an alternative approach for addressing the tricky antibiotic resistance by blocking the biosynthesis of carotenoid pigment which shields the bacterium from host oxidant killing. In this study, we designed and synthesized 44 derivatives with piperonyl scaffold targeting CrtN and the structure-activity relationships (SARs) were examined extensively to bring out the discovery of 21b with potent efficacy and better hERG safety profile compared to the first class CrtN inhibitor benzocycloalkane derivative 2. Except the excellent pigment inhibitory activity against wild-type S. aureus, 21b also showed excellent pigment inhibition against four pigmented MRSA strains. In addition, H2O2 killing and human whole blood killing assays proved 21b could sensitize S. aureus to be killed under oxidative stress conditions. Notably, the murine study in vivo validated the efficacy of 21b against pigmented S. aureus Newman, vancomycin-intermediate S. aureus Mu50 and linezolid-resistant S. aureus NRS271.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Butóxido de Piperonila/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Relação Dose-Resposta a Droga , Descoberta de Drogas , Humanos , Linezolida/farmacologia , Meticilina/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxirredutases/metabolismo , Butóxido de Piperonila/análogos & derivados , Butóxido de Piperonila/química , Staphylococcus aureus/enzimologia , Relação Estrutura-Atividade , Vancomicina/farmacologia
12.
ACS Chem Neurosci ; 9(2): 328-345, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29068218

RESUMO

Through drug discovery strategies of repurposing and redeveloping existing drugs, a series of novel tadalafil derivatives were rationally designed, synthesized, and evaluated to seek dual-target AChE/PDE5 inhibitors as good candidate drugs for Alzheimer's disease (AD). Among these derivatives, 1p and 1w exhibited excellent selective dual-target AChE/PDE5 inhibitory activities and improved blood-brain barrier (BBB) penetrability. Importantly, 1w·Cit (citrate of 1w) could reverse the cognitive dysfunction of scopolamine-induced AD mice and exhibited an excellent effect on enhancing cAMP response element-binding protein (CREB) phosphorylation in vivo, a crucial factor in memory formation and synaptic plasticity. Moreover, the molecular docking simulations of 1w with hAChE and hPDE5A confirmed that our design strategy was rational. In summary, our research provides a potential selective dual-target AChE/PDE5 inhibitor as a good candidate drug for the treatment of AD, and it could also be regarded as a small molecule probe to validate the novel AD therapeutic approach in vivo.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores da Fosfodiesterase 5/síntese química , Inibidores da Fosfodiesterase 5/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/enzimologia , Animais , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacocinética , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/enzimologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores da Fosfodiesterase 5/química , Inibidores da Fosfodiesterase 5/farmacocinética , Fosforilação/efeitos dos fármacos , Distribuição Aleatória , Ratos , Escopolamina
13.
J Med Chem ; 60(19): 8145-8159, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-28880552

RESUMO

Our previous work ( Wang et al. J. Med. Chem. 2016 , 59 , 4831 - 4848 ) revealed that effective benzocycloalkane-derived staphyloxanthin inhibitors against methicillin-resistant Staphylococcus aureus (S. aureus) infections were accompanied by poor water solubility and high hERG inhibition and dosages (preadministration). In this study, 92 chroman and coumaran derivatives as novel inhibitors have been addressed for overcoming deficiencies above. Derivatives 69 and 105 displayed excellent pigment inhibitory activities and low hERG inhibition, along with improvement of solubility by salt type selection. The broad and significantly potent antibacterial spectra of 69 and 105 were displayed first with normal administration in the livers and hearts in mice against pigmented S. aureus Newman, Mu50 (vancomycin-intermediate S. aureus), and NRS271 (linezolid-resistant S. aureus), compared with linezolid and vancomycin. In summary, both 69 and 105 have the potential to be developed as good antibacterial candidates targeting virulence factors.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Linezolida/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/farmacologia , Xantofilas/antagonistas & inibidores , Animais , Antibacterianos/farmacocinética , Antifúngicos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Infecções Estafilocócicas/microbiologia , Relação Estrutura-Atividade , Resistência a Vancomicina/efeitos dos fármacos
14.
J Med Chem ; 60(12): 5099-5119, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28541695

RESUMO

Stem cell factor receptor (c-KIT) and platelet derived growth factor receptor alpha (PDGFRα) kinases play an important role in gastrointestinal stromal tumors (GISTs). Here, we have discovered an c-KIT/PDGFRα dual inhibitor, compound 31, with single-digit nanomolar potency against c-KIT and PDGFRα. Compared to Imatinib (1), 31 showed better antiproliferative efficacy against various TEL-c-KIT/PDGFRα-BaF3 isogenic cells, including three 1-resistant BaF3 cell lines, as well as against GIST-T1 and GIST-882 cell lines. Furthermore, compound 31 showed a good KinomeScan selectivity (468 kinases) (S score (1) = 0.01 at 1 µM concentration), good metabolic stability in liver microsomes, and no hERG inhibitory activity. It was worth noting that 31 inhibited GIST-T1 tumor growth (TGI = 81.5%) and even the BaF3-TEL-cKIT-T670I tumor progression (TGI = 41.9%, 1-resistant GISTs) at a dosage of 100 mg/kg/day without exhibiting apparent toxicity.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Técnicas de Química Sintética , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Humanos , Mesilato de Imatinib/farmacologia , Masculino , Camundongos Nus , Terapia de Alvo Molecular/métodos , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Ratos Sprague-Dawley , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...