Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Lab Chip ; 24(6): 1685-1701, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38317604

RESUMO

Geometry and mechanical characteristics of the environment surrounding the Engineered Heart Tissues (EHT) affect their structure and function. Here, we employed a 3D tissue culture platform fabricated using two-photon direct laser writing with a high degree of accuracy to control parameters that are relevant to EHT maturation. Using this platform, we first explore the effects of geometry based on two distinct shapes: a rectangular seeding well with two attachment sites, and a stadium-like seeding well with six attachment sites that are placed symmetrically along hemicylindrical membranes. The former geometry promotes uniaxial contraction of the tissues; the latter additionally induces diagonal fiber alignment. We systematically increase the length of the seeding wells for both configurations and observe a positive correlation between fiber alignment at the center of the EHTs and tissue length. With increasing length, an undesirable thinning and "necking" also emerge, leading to the failure of longer tissues over time. In the second step, we optimize the stiffness of the seeding wells and modify some of the attachment sites of the platform and the seeding parameters to achieve tissue stability for each length and geometry. Furthermore, we use the platform for electrical pacing and calcium imaging to evaluate the functional dynamics of EHTs as a function of frequency.


Assuntos
Miócitos Cardíacos , Engenharia Tecidual , Engenharia Tecidual/métodos , Lasers , Contração Miocárdica
3.
Nat Commun ; 12(1): 1781, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741908

RESUMO

Prostate cancer (PCa) risk-associated SNPs are enriched in noncoding cis-regulatory elements (rCREs), yet their modi operandi and clinical impact remain elusive. Here, we perform CRISPRi screens of 260 rCREs in PCa cell lines. We find that rCREs harboring high risk SNPs are more essential for cell proliferation and H3K27ac occupancy is a strong indicator of essentiality. We also show that cell-line-specific essential rCREs are enriched in the 8q24.21 region, with the rs11986220-containing rCRE regulating MYC and PVT1 expression, cell proliferation and tumorigenesis in a cell-line-specific manner, depending on DNA methylation-orchestrated occupancy of a CTCF binding site in between this rCRE and the MYC promoter. We demonstrate that CTCF deposition at this site as measured by DNA methylation level is highly variable in prostate specimens, and observe the MYC eQTL in the 8q24.21 locus in individuals with low CTCF binding. Together our findings highlight a causal mechanism synergistically driven by a risk SNP and DNA methylation-mediated 3D genome architecture, advocating for the integration of genetics and epigenetics in assessing risks conferred by genetic predispositions.


Assuntos
Sistemas CRISPR-Cas , Metilação de DNA , Edição de Genes/métodos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Neoplasias da Próstata/genética , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Locos de Características Quantitativas/genética , Elementos Reguladores de Transcrição/genética , Fatores de Risco
4.
Lab Chip ; 20(23): 4357-4372, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-32955072

RESUMO

Traditional drug screening models are often unable to faithfully recapitulate human physiology in health and disease, motivating the development of microfluidic organs-on-a-chip (OOC) platforms that can mimic many aspects of human physiology and in the process alleviate many of the discrepancies between preclinical studies and clinical trials outcomes. Linsitinib, a novel anti-cancer drug, showed promising results in pre-clinical models of Ewing Sarcoma (ES), where it suppressed tumor growth. However, a Phase II clinical trial in several European centers with patients showed relapsed and/or refractory ES. We report an integrated, open setting, imaging and sampling accessible, polysulfone-based platform, featuring minimal hydrophobic compound binding. Two bioengineered human tissues - bone ES tumor and heart muscle - were cultured either in isolation or in the integrated platform and subjected to a clinically used linsitinib dosage. The measured anti-tumor efficacy and cardiotoxicity were compared with the results observed in the clinical trial. Only the engineered tumor tissues, and not monolayers, recapitulated the bone microenvironment pathways targeted by linsitinib, and the clinically-relevant differences in drug responses between non-metastatic and metastatic ES tumors. The responses of non-metastatic ES tumor tissues and heart muscle to linsitinib were much closer to those observed in the clinical trial for tissues cultured in an integrated setting than for tissues cultured in isolation. Drug treatment of isolated tissues resulted in significant decreases in tumor viability and cardiac function. Meanwhile, drug treatment in an integrated setting showed poor tumor response and less cardiotoxicity, which matched the results of the clinical trial. Overall, the integration of engineered human tumor and cardiac tissues in the integrated platform improved the predictive accuracy for both the direct and off-target effects of linsitinib. The proposed approach could be readily extended to other drugs and tissue systems.


Assuntos
Antineoplásicos , Sarcoma de Ewing , Antineoplásicos/uso terapêutico , Coração , Humanos , Dispositivos Lab-On-A-Chip , Sarcoma de Ewing/tratamento farmacológico , Engenharia Tecidual , Microambiente Tumoral
5.
Elife ; 92020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32573431

RESUMO

The maternal-to-zygotic transition (MZT) is a conserved step in animal development, where control is passed from the maternal to the zygotic genome. Although the MZT is typically considered from its impact on the transcriptome, we previously found that three maternally deposited Drosophila RNA-binding proteins (ME31B, Trailer Hitch [TRAL], and Cup) are also cleared during the MZT by unknown mechanisms. Here, we show that these proteins are degraded by the ubiquitin-proteasome system. Marie Kondo, an E2 conjugating enzyme, and the E3 CTLH ligase are required for the destruction of ME31B, TRAL, and Cup. Structure modeling of the Drosophila CTLH complex suggests that substrate recognition is different than orthologous complexes. Despite occurring hours earlier, egg activation mediates clearance of these proteins through the Pan Gu kinase, which stimulates translation of Kdo mRNA. Clearance of the maternal protein dowry thus appears to be a coordinated, but as-yet underappreciated, aspect of the MZT.


Bestselling author and organizing consultant Marie Kondo has helped people around the world declutter their homes by getting rid of physical items that do not bring them joy. Keeping the crowded environment inside a living cell organized also requires work and involves removing molecules that are no longer needed. A fertilized egg cell, for example, contains molecules from the mother that regulate the initial stages as it develops into an embryo. Later on, the embryo takes control of its own development by destroying these inherited molecules and switches to making its own instead. This process is called the maternal-to-zygotic transition. The molecules passed from the mother to the egg cell include proteins and messenger RNAs (molecules that include the coded instructions to make new proteins). Previous research has begun to reveal how the embryo destroys the mRNAs it inherits from its mother and how it starts to make its own. Yet almost nothing is known about how an embryo gets rid of its mother's proteins. To address this question, Zavortink, Rutt, Dzitoyeva et al. used an approach known as an RNA interference screen to identify factors required to destroy three maternal proteins in fruit fly embryos. The experiments helped identify one enzyme that worked together with another larger enzyme complex to destroy the maternal proteins. This enzyme belongs to a class of enzymes known as ubiquitin-conjugating enzymes (or E2 enzymes) and it was given the name "Kdo", short for "Marie Kondo". Further experiments showed that the mRNAs that code for the Kdo enzyme were present in unfertilized eggs, but in a repressed state that prevented the eggs from making the enzyme. Once an egg started to develop into an embryo, these mRNAs became active and the embryo started to make Kdo enzymes. This led to the three maternal proteins being destroyed during the maternal-to-zygotic transition. These findings reveal a new pathway that regulates the destruction of maternal proteins as the embryo develops. The next challenge will be identifying other maternal proteins that do not "spark joy" and understanding the role their destruction plays in the earliest events of embryonic development.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Zigoto/metabolismo , Animais , RNA Helicases DEAD-box/metabolismo , Drosophila melanogaster/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ribonucleoproteínas/metabolismo , Ubiquitina/metabolismo
6.
Cell ; 176(4): 831-843.e22, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30735634

RESUMO

The cancer transcriptome is remarkably complex, including low-abundance transcripts, many not polyadenylated. To fully characterize the transcriptome of localized prostate cancer, we performed ultra-deep total RNA-seq on 144 tumors with rich clinical annotation. This revealed a linear transcriptomic subtype associated with the aggressive intraductal carcinoma sub-histology and a fusion profile that differentiates localized from metastatic disease. Analysis of back-splicing events showed widespread RNA circularization, with the average tumor expressing 7,232 circular RNAs (circRNAs). The degree of circRNA production was correlated to disease progression in multiple patient cohorts. Loss-of-function screening identified 11.3% of highly abundant circRNAs as essential for cell proliferation; for ∼90% of these, their parental linear transcripts were not essential. Individual circRNAs can have distinct functions, with circCSNK1G3 promoting cell growth by interacting with miR-181. These data advocate for adoption of ultra-deep RNA-seq without poly-A selection to interrogate both linear and circular transcriptomes.


Assuntos
Neoplasias da Próstata/genética , RNA/genética , RNA/metabolismo , Perfilação da Expressão Gênica/métodos , Perfil Genético , Células HEK293 , Humanos , Masculino , MicroRNAs/metabolismo , Próstata/metabolismo , Splicing de RNA/genética , RNA Circular , RNA não Traduzido/genética , Análise de Sequência de RNA/métodos , Transcriptoma
7.
PLoS Biol ; 16(9): e2006092, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30212448

RESUMO

N6-Methyladenosine (m6A) accounts for approximately 0.2% to 0.6% of all adenosine in mammalian mRNA, representing the most abundant internal mRNA modifications. m6A RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-seq) is a powerful technique to map the m6A location transcriptome-wide. However, this method typically requires 300 µg of total RNA, which limits its application to patient tumors. In this study, we present a refined m6A MeRIP-seq protocol and analysis pipeline that can be applied to profile low-input RNA samples from patient tumors. We optimized the key parameters of m6A MeRIP-seq, including the starting amount of RNA, RNA fragmentation, antibody selection, MeRIP washing/elution conditions, methods for RNA library construction, and the bioinformatics analysis pipeline. With the optimized immunoprecipitation (IP) conditions and a postamplification rRNA depletion strategy, we were able to profile the m6A epitranscriptome using 500 ng of total RNA. We identified approximately 12,000 m6A peaks with a high signal-to-noise (S/N) ratio from 2 lung adenocarcinoma (ADC) patient tumors. Through integrative analysis of the transcriptome, m6A epitranscriptome, and proteome data in the same patient tumors, we identified dynamics at the m6A level that account for the discordance between mRNA and protein levels in these tumors. The refined m6A MeRIP-seq method is suitable for m6A epitranscriptome profiling in a limited amount of patient tumors, setting the ground for unraveling the dynamics of the m6A epitranscriptome and the underlying mechanisms in clinical settings.


Assuntos
Perfilação da Expressão Gênica , Imunoprecipitação/métodos , RNA/metabolismo , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Anticorpos/metabolismo , Sequência de Bases , Humanos , RNA/genética
8.
Cell ; 174(3): 564-575.e18, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30033362

RESUMO

The prostate cancer (PCa) risk-associated SNP rs11672691 is positively associated with aggressive disease at diagnosis. We showed that rs11672691 maps to the promoter of a short isoform of long noncoding RNA PCAT19 (PCAT19-short), which is in the third intron of the long isoform (PCAT19-long). The risk variant is associated with decreased and increased levels of PCAT19-short and PCAT19-long, respectively. Mechanistically, the risk SNP region is bifunctional with both promoter and enhancer activity. The risk variants of rs11672691 and its LD SNP rs887391 decrease binding of transcription factors NKX3.1 and YY1 to the promoter of PCAT19-short, resulting in weaker promoter but stronger enhancer activity that subsequently activates PCAT19-long. PCAT19-long interacts with HNRNPAB to activate a subset of cell-cycle genes associated with PCa progression, thereby promoting PCa tumor growth and metastasis. Taken together, these findings reveal a risk SNP-mediated promoter-enhancer switching mechanism underlying both initiation and progression of aggressive PCa.


Assuntos
Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Alelos , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica/genética , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Isoformas de RNA/genética , Fatores de Risco , Fatores de Transcrição/metabolismo , Fator de Transcrição YY1/metabolismo
9.
Genome Biol ; 18(1): 211, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089021

RESUMO

BACKGROUND: All mRNAs are bound in vivo by proteins to form mRNA-protein complexes (mRNPs), but changes in the composition of mRNPs during posttranscriptional regulation remain largely unexplored. Here, we have analyzed, on a transcriptome-wide scale, how microRNA-mediated repression modulates the associations of the core mRNP components eIF4E, eIF4G, and PABP and of the decay factor DDX6 in human cells. RESULTS: Despite the transient nature of repressed intermediates, we detect significant changes in mRNP composition, marked by dissociation of eIF4G and PABP, and by recruitment of DDX6. Furthermore, although poly(A)-tail length has been considered critical in post-transcriptional regulation, differences in steady-state tail length explain little of the variation in either PABP association or mRNP organization more generally. Instead, relative occupancy of core components correlates best with gene expression. CONCLUSIONS: These results indicate that posttranscriptional regulatory factors, such as microRNAs, influence the associations of PABP and other core factors, and do so without substantially affecting steady-state tail length.


Assuntos
MicroRNAs/metabolismo , Poli A/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Drosophila , Células HEK293 , Humanos , MicroRNAs/genética , Poliadenilação , Ligação Proteica , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/genética , Saccharomyces cerevisiae/metabolismo
10.
Elife ; 62017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28875934

RESUMO

In animal embryos, control of development is passed from exclusively maternal gene products to those encoded by the embryonic genome in a process referred to as the maternal-to-zygotic transition (MZT). We show that the RNA-binding protein, ME31B, binds to and represses the expression of thousands of maternal mRNAs during the Drosophila MZT. However, ME31B carries out repression in different ways during different phases of the MZT. Early, it represses translation while, later, its binding leads to mRNA destruction, most likely as a consequence of translational repression in the context of robust mRNA decay. In a process dependent on the PNG kinase, levels of ME31B and its partners, Cup and Trailer Hitch (TRAL), decrease by over 10-fold during the MZT, leading to a change in the composition of mRNA-protein complexes. We propose that ME31B is a global repressor whose regulatory impact changes based on its biological context.


Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação para Baixo , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Drosophila/genética , Regulação da Expressão Gênica , RNA Mensageiro Estocado/metabolismo , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Ribonucleoproteínas/metabolismo
11.
J Diabetes Complications ; 31(11): 1571-1579, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28893494

RESUMO

AIMS: Information on the burden and risk factors for diabetes-depression comorbidity in the US is sparse. We used data from the largest all-payer, nationally-representative inpatient database in the US to estimate the prevalence, temporal trends, and risk factors for comorbid depression among adult diabetic inpatients. METHODS: We conducted a retrospective analysis using the 2002-2014 Nationwide Inpatient Sample databases. Depression and other comorbidities were identified using ICD-9-CM codes. Logistic regression was used to investigate the association between patient characteristics and depression. RESULTS: The rate of depression among patients with type 2 diabetes increased from 7.6% in 2002 to 15.4% in 2014, while for type 1 diabetes the rate increased from 8.7% in 2002 to 19.6% in 2014. The highest rates of depression were observed among females, non-Hispanic whites, younger patients, and patients with five or more chronic comorbidities. CONCLUSIONS: The prevalence of comorbid depression among diabetic inpatients in the US is increasing rapidly. Although some portion of this increase could be explained by the rising prevalence of multimorbidity, increased awareness and likelihood of diagnosis of comorbid depression by physicians and better documentation as a result of the increased adoption of electronic health records likely contributed to this trend.


Assuntos
Transtornos de Adaptação/epidemiologia , Transtorno Depressivo/epidemiologia , Complicações do Diabetes/psicologia , Diabetes Mellitus Tipo 1/psicologia , Diabetes Mellitus Tipo 2/psicologia , Transição Epidemiológica , Transtornos da Personalidade/epidemiologia , Transtornos de Adaptação/terapia , Adulto , Fatores Etários , Estudos de Coortes , Comorbidade , Estudos Transversais , Transtorno Depressivo/terapia , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/terapia , Complicações do Diabetes/complicações , Complicações do Diabetes/epidemiologia , Complicações do Diabetes/terapia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/terapia , Transtorno Distímico/epidemiologia , Transtorno Distímico/terapia , Feminino , Hospitalização , Humanos , Reembolso de Seguro de Saúde , Masculino , Transtornos da Personalidade/terapia , Prevalência , Estudos Retrospectivos , Fatores de Risco , Fatores Sexuais , Estados Unidos/epidemiologia
12.
RNA ; 22(4): 636-55, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26847261

RESUMO

Post-transcriptional regulation of mRNAs plays an essential role in the control of gene expression. mRNAs are regulated in ribonucleoprotein (RNP) complexes by RNA-binding proteins (RBPs) along with associated protein and noncoding RNA (ncRNA) cofactors. A global understanding of post-transcriptional control in any cell type requires identification of the components of all of its RNP complexes. We have previously shown that these complexes can be purified by immunoprecipitation using anti-RBP synthetic antibodies produced by phage display. To develop the large number of synthetic antibodies required for a global analysis of RNP complex composition, we have established a pipeline that combines (i) a computationally aided strategy for design of antigens located outside of annotated domains, (ii) high-throughput antigen expression and purification in Escherichia coli, and (iii) high-throughput antibody selection and screening. Using this pipeline, we have produced 279 antibodies against 61 different protein components of Drosophila melanogaster RNPs. Together with those produced in our low-throughput efforts, we have a panel of 311 antibodies for 67 RNP complex proteins. Tests of a subset of our antibodies demonstrated that 89% immunoprecipitate their endogenous target from embryo lysate. This panel of antibodies will serve as a resource for global studies of RNP complexes in Drosophila. Furthermore, our high-throughput pipeline permits efficient production of synthetic antibodies against any large set of proteins.


Assuntos
Anticorpos/química , Proteínas de Drosophila/imunologia , Ribonucleoproteínas/imunologia , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Antígenos/imunologia , Antígenos/isolamento & purificação , Western Blotting , Regiões Determinantes de Complementaridade , Proteínas de Drosophila/isolamento & purificação , Drosophila melanogaster , Ensaio de Imunoadsorção Enzimática , Escherichia coli , Imunoprecipitação , Dados de Sequência Molecular , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Ribonucleoproteínas/isolamento & purificação
13.
Hum Mol Genet ; 22(15): 3123-37, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23591991

RESUMO

Mutations in ACTA2, encoding the smooth muscle cell (SMC)-specific isoform of α-actin (α-SMA), cause thoracic aortic aneurysms and dissections and occlusive vascular diseases, including early onset coronary artery disease and stroke. We have shown that occlusive arterial lesions in patients with heterozygous ACTA2 missense mutations show increased numbers of medial or neointimal SMCs. The contribution of SMC hyperplasia to these vascular diseases and the pathways responsible for linking disruption of α-SMA filaments to hyperplasia are unknown. Here, we show that the loss of Acta2 in mice recapitulates the SMC hyperplasia observed in ACTA2 mutant SMCs and determine the cellular pathways responsible for SMC hyperplasia. Acta2(-/-) mice showed increased neointimal formation following vascular injury in vivo, and SMCs explanted from these mice demonstrated increased proliferation and migration. Loss of α-SMA induced hyperplasia through focal adhesion (FA) rearrangement, FA kinase activation, re-localization of p53 from the nucleus to the cytoplasm and increased expression and ligand-independent activation of platelet-derived growth factor receptor beta (Pdgfr-ß). Disruption of α-SMA in wild-type SMCs also induced similar cellular changes. Imatinib mesylate inhibited Pdgfr-ß activation and Acta2(-/-) SMC proliferation in vitro and neointimal formation with vascular injury in vivo. Loss of α-SMA leads to SMC hyperplasia in vivo and in vitro through a mechanism involving FAK, p53 and Pdgfr-ß, supporting the hypothesis that SMC hyperplasia contributes to occlusive lesions in patients with ACTA2 missense mutations.


Assuntos
Actinas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Actinas/genética , Animais , Movimento Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células , Ativação Enzimática , Hiperplasia , Camundongos , Camundongos Knockout , Modelos Biológicos , Fenótipo , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo
14.
Endocrine ; 17(2): 119-27, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12041913

RESUMO

Control of the cell cycle is accomplished by sequentially activated cyclin-dependent kinases and the action of inhibitory proteins. We have shown that exposure of 235-1 rat pituitary tumor cells to dexamethasone (DEX) leads to a 50% reduction in growth rate. We examined the mechanism by which DEX affects 235-1 cell proliferation by determining the expression levels of proteins involved in cell-cycle progression. The expression of the G1 markers c-Myc and cyclin D3 were unaffected by DEX treatment. Levels of retinoblastoma family proteins p107 and p116 Rb were not altered. The levels of p1 30/Rb2 were increased by DEX within 36 h of initiating treatment. Additionally, a higher-mobility Rb2-related protein appeared within 24 h and was further increased in DEX-treated cells by 36 h. We also observed reduced levels of M-phase proteins, Cdc2 kinase, and cyclin B in DEX-treated cells. These changes occurred prior to the reduction in cell numbers and thus may represent causative factors. Our data suggest that DEX induces a late G1 block in 235-1 cell-cycle passage, accompanied by a reduction in the levels of the regulatory proteins required for passage through subsequent phases of the cell cycle.


Assuntos
Ciclo Celular/efeitos dos fármacos , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Neoplasias Hipofisárias/patologia , Prolactinoma/patologia , Animais , Northern Blotting , Western Blotting , Proteína Quinase CDC2/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/efeitos dos fármacos , Ciclina B/metabolismo , Ciclina B1 , Ciclina D3 , Inibidor de Quinase Dependente de Ciclina p27 , Ciclinas/metabolismo , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Prolactinoma/genética , Prolactinoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Neoplásico/química , RNA Neoplásico/genética , Ratos , Proteína do Retinoblastoma/metabolismo , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...