Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotoxicology ; 95: 12-22, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36623431

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder with progressive memory loss in dementia. Gold nanoparticles (AuNPs) were reported beneficial for human neural stem cells (hNSCs) treated with Amyloid-beta (Aß), but the neuroprotective mechanisms still are unknown. First, the hNSCs induced by Aß to construct AD cell model in vitro and AuNPs was performed to assess the therapeutic effect of Aß-targeted AD treatment. Then, we investigated the effects of AuNPs on hNSCs viability and proinflammatory factors (interleukin 6 and tumor necrosis factor-alpha) by Cell Counting Kit-8 (CCK-8) and enzyme-linked immunosorbent (ELISA). FACS was carried out to determinate Tuj-1 and glial fibrillary acidic protein (GFAP). Reactive oxygen species (ROS) generation and mitochondrial membrane potential was evaluated by ROS and JC-1 assay kit. In addition, miRNA array was used to systematically detect the differential miRNAs. Dual-luciferase reporter assay was applied to verify the targeting relationship between miR-21-5p and the suppressor of cytokine signalling 6(SOCS6). Quantitative PCR (qPCR) and Western blot assessments were also used to detect related gene expression intracellularly or in the supernatant. The results demonstrate that AuNPs co-treatment repressed the high expression of total tau (T-tau), phosphorylated tau (P-tau), and Aß protein, and reduced apoptosis rate of hNSCs. Aß-induced decreased mitochondrial membrane potential and mitochondria in the hNSCs were damaged, while AuNPs co-treatment showed a protective effect on mitochondrial membrane potential. Co-treatment with AuNPs significantly increased dynamin-related protein 1 (DRP1), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM) mRNA levels. AuNPs may improve mitochondrial function impairment due to Aß by elevating mitochondrial membrane potential, upregulating regulators of mitochondrial biogenesis, and inhibiting ROS production. hNSCs transfected with miR-21-5p inhibitor reversed AuNPs mediated cytoprotection induced by Aß. AuNPs upregulation of miR-21-5p expression and exert a mitochondrial protective function. Overexpression of miR-21-5p contributes to enhancing the effect of cytoprotection of AuNPs. MiR-21-5p direct targeting SOCS6 and overexpression SOCS6 exerted opposite effects on hNSCs compared with miR-21-5p mimic group. In conclusion, AuNPs can protect hNSCs from Aß injury and decrease mitochondrial damage by regulating the miR-21-5p/SOCS6 pathway.


Assuntos
Doença de Alzheimer , Nanopartículas Metálicas , MicroRNAs , Células-Tronco Neurais , Humanos , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Ouro/metabolismo , Ouro/farmacologia , Ouro/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Metálicas/toxicidade , Doença de Alzheimer/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/farmacologia , Proteínas Supressoras da Sinalização de Citocina/uso terapêutico
2.
Ann Transl Med ; 10(16): 909, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36111049

RESUMO

Background: Intracranial atherosclerotic stenosis (ICAS) is one of the leading causes of stroke worldwide. Current diagnostic evaluations and treatments remain insufficient to assess the vulnerability of intracranial plaques and reduce the recurrence of stroke in symptomatic ICAS. On the other hand, asymptomatic ICAS is associated with an increased risk of cognitive impairment. The pathogenesis of ICAS related cognitive decline is largely unknown. The aim of SICO-ICAS study (stroke incidence and cognitive outcomes of ICAS) is to elucidate the pathophysiology of stroke and cognitive impairment in ICAS population, comprehensively evaluating the complex interactions among life-course exposure, genomic variation, vascular risk factors, cerebrovascular burden and coexisting neurodegeneration. Methods: SICO-ICAS is a multicenter, prospective, observational cohort study. We aim to recruit 3,000 patients with symptomatic or asymptomatic ICAS (>50% or occlusion) who will be followed up for ≥12 months. All participants will undergo pre-designed magnetic resonance imaging packages, blood biomarkers testing, as well as detailed cognitive domains assessment. All participants will undergo clinical visits every 6 months and telephone interviews every 3 months. The primary outcome measurement is ischemic stroke or cognitive impairment within 12 months after enrollment. Discussion: This study will establish a large prospective ICAS cohort, hopefully discover new biomarkers associated with vulnerable intracranial plaques, identify subjects at high risk for incident ischemic stroke or cognitive impairment, and eventually propose a precise diagnostic and treatment strategy for ICAS population. Trial Registration: Chinese Clinical Trials Register ChiCTR2200061938.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...