Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Spine J ; 32(7): 2255-2265, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37179256

RESUMO

PURPOSE: To develop a novel 3D printable polyether ether ketone (PEEK)-hydroxyapatite (HA)-magnesium orthosilicate (Mg2SiO4) composite material with enhanced properties for potential use in tumour, osteoporosis and other spinal conditions. We aim to evaluate biocompatibility and imaging compatibility of the material. METHODS: Materials were prepared in three different compositions, namely composite A: 75 weight % PEEK, 20 weight % HA, 5 weight % Mg2SiO4; composite B: 70 weight% PEEK, 25 weight % HA, 5 weight % Mg2SiO4; and composite C: 65 weight % PEEK, 30 weight % HA, 5 weight % Mg2SiO4. The materials were processed to obtain 3D printable filament. Biomechanical properties were analysed as per ASTM standards and biocompatibility of the novel material was evaluated using indirect and direct cell cytotoxicity tests. Cell viability of the novel material was compared to PEEK and PEEK-HA materials. The novel material was used to 3D print a standard spine cage. Furthermore, the CT and MR imaging compatibility of the novel material cage vs PEEK and PEEK-HA cages were evaluated using a phantom setup. RESULTS: Composite A resulted in optimal material processing to obtain a 3D printable filament, while composite B and C resulted in non-optimal processing. Composite A enhanced cell viability up to ~ 20% compared to PEEK and PEEK-HA materials. Composite A cage generated minimal/no artefacts on CT and MR imaging and the images were comparable to that of PEEK and PEEK-HA cages. CONCLUSION: Composite A demonstrated superior bioactivity vs PEEK and PEEK-HA materials and comparable imaging compatibility vs PEEK and PEEK-HA. Therefore, our material displays an excellent potential to manufacture spine implants with enhanced mechanical and bioactive property.


Assuntos
Durapatita , Polietilenoglicóis , Humanos , Durapatita/farmacologia , Polímeros , Cetonas
2.
Eur Spine J ; 32(6): 1953-1965, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37052651

RESUMO

PURPOSE: To manufacture and test 3D printed novel design titanium spine rods with lower flexural modulus and stiffness compared to standard solid titanium rods for use in metastatic spine tumour surgery (MSTS) and osteoporosis. METHODS: Novel design titanium spine rods were designed and 3D printed. Three-point bending test was performed to assess mechanical performance of rods, while a French bender was used to assess intraoperative rod contourability. Furthermore, 3D printed spine rods were tested for CT & MR imaging compatibility using phantom setup. RESULTS: Different spine rod designs generated includes shell, voronoi, gyroid, diamond, weaire-phelan, kelvin, and star. Tests showed 3D printed rods had lower flexural modulus with reduction ranging from 2 to 25% versus standard rod. Shell rods exhibited highest reduction in flexural modulus of 25% (~ 77.4 GPa) and star rod exhibited lowest reduction in flexural modulus of 2% (100.8GPa). 3D printed rod showed reduction in stiffness ranging from 40 to 59%. Shell rod displayed highest reduction in stiffness of 59% (179.9 N/mm) and gyroid had least reduction in stiffness of 40% (~ 259.2 N/mm). Rod bending test showed that except gyroid, other rod designs demonstrated lesser bending difficulty versus standard rod. All 3D printed rods demonstrated improved CT/MR imaging compatibility with reduced artefacts versus standard rod. CONCLUSION: By utilising novel design approach, we successfully generated a spine rod design portfolio with lower flexural modulus/stiffness profile and better CT/MR imaging compatibility for potential use in MSTS/other conditions such as osteoporosis. Thus, exploration of new rod designs in surgical application could enhance treatment outcome and improve quality of life for patients.


Assuntos
Qualidade de Vida , Titânio , Humanos , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/cirurgia , Impressão Tridimensional , Teste de Materiais
3.
Biomater Adv ; 137: 212829, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929262

RESUMO

Lattice structures are widely used in orthopedic implants due to their unique features, such as high strength-to-weight ratios and adjustable biomechanical properties. Based on the type of unit cell geometry, lattice structures may be classified into two types: strut-based structures and sheet-based structures. In this study, strut-based structures (Cubic & Octet) and sheet-based structure (triply periodic minimal surface (TPMS) gyroid) were investigated. The biomechanical properties of the three different Ti6Al4V lattice structures fabricated by selective laser melting (SLM) were investigated using room temperature compression testing. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to check the 3D printing quality with regards to defects and quantitative compositional information of 3D printed parts. Experimental results indicated that TPMS gyroid has superior biomechanical properties when compared to Cubic and Octet. Also, TPMS gyroid was found to be less affected by the variations in relative density. The biocompatibility of Ti6Al4V lattice structures was validated through the cytotoxicity test with human osteoblast-like SAOS2 cells. The debris generated during the degradation process in the form of particles and ions is among the primary causes of implant failure over time. In this study, Ti6Al4V particles with spherical and irregular shapes having average particle sizes of 36.5 µm and 28.8 µm, respectively, were used to mimic the actual Ti6Al4V particles to understand their harmful effects better. Also, the effects and amount of Ti6Al4V ions released after immersion within the cell culture media were investigated using the indirect cytotoxicity test and ion release test.


Assuntos
Lasers , Osteoblastos , Ligas , Humanos , Teste de Materiais , Porosidade , Titânio
4.
J Mech Behav Biomed Mater ; 129: 105151, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276639

RESUMO

Metallic lattice structures can be fabricated by selective laser melting (SLM) with purposefully designed pores and controlled pore sizes that can bio mimic the natural bone, providing adequate mechanical and biological support for the patients. Strut-based structures, like Cubic, Octet; and sheet-based structures, like triply periodic minimal surface (TPMS) gyroid, have been studied extensively in the past. However, it lacks enough comparative study on the mechanical properties and cytotoxicity among these structures. Therefore, Cubic, Octet, and TPMS gyroid of Stainless steel 316 L (SS316L) are designed, manufactured, and characterized at 40/50/60% relative densities in this study. Moreover, the flowability, density characteristics, and cytotoxicity of SS316L powder are validated to ascertain its suitability for 3D printing and implant application. Based on refining the Gibson-Ashby model, it is possible to predict or design the mechanical properties via adjusting the relative densities. The results indicate these structures demonstrated appropriate Young's modulus and outstanding biocompatibility.


Assuntos
Lasers , Aço Inoxidável , Osso e Ossos , Módulo de Elasticidade , Humanos , Porosidade
5.
J Biomed Mater Res B Appl Biomater ; 109(2): 160-179, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32776481

RESUMO

Bone defects and diseases are devastating, and can lead to severe functional deficits or even permanent disability. Nevertheless, orthopedic implants and scaffolds can facilitate the growth of incipient bone and help us to treat bone defects and diseases. Currently, a wide range of biomaterials with distinct biocompatibility, biodegradability, porosity, and mechanical strength is used in bone-related research. However, most orthopedic implants and scaffolds have certain limitations and diverse complications, such as limited corrosion resistance, low cell proliferation, and bacterial adhesion. With recent advancements in materials science and nanotechnology, metallic and metallic oxide nanoparticles have become the subject of significant interest as they offer an ample variety of options to resolve the existing problems in the orthopedic industry. More importantly, these nanoparticles possess unique physicochemical and mechanical properties not found in conventional materials, and can be incorporated into orthopedic implants and scaffolds to enhance their antimicrobial ability, bioactive molecular delivery, mechanical strength, osteointegration, and cell labeling and imaging. However, many metallic and metallic oxide nanoparticles can also be toxic to nearby cells and tissues. This review article will discuss the applications and functions of metallic and metallic oxide nanoparticles in orthopedic implants and bone tissue engineering.


Assuntos
Ligas/uso terapêutico , Materiais Biocompatíveis/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Próteses e Implantes , Ligas/efeitos adversos , Materiais Biocompatíveis/efeitos adversos , Corrosão , Humanos , Nanopartículas Metálicas/efeitos adversos , Óxidos/efeitos adversos , Óxidos/uso terapêutico
6.
Mater Sci Eng C Mater Biol Appl ; 117: 111285, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919646

RESUMO

Hybrid implants combine both Titanium (Ti) and Magnesium (Mg) are prevalent nowadays. The long-term implications of Ti and Mg implants within the human body are not yet fully understood. Many implant failure cases due to inflammation, allergic responses, and aspect loosening have been reported frequently. Particles generated through daily wear and tear of implants may worsen the situation by causing acute complications. An in-depth understanding of the behavior of metal particles with human osteoblasts is necessary. In this study, a novel and systematic attempt was made to understand the effects of different concentrations of Ti and Mg particles to the osteoblastic SAOS2 cell: toxicity, alterations to mitochondria, and changes to the specific gene and protein expression. Ti particles were found toxic to SAOS2 cells at different dosages, while Mg particles at lower concentrations could improve cell viability. To understand this phenomenon better, we have measured cellular reactive oxygen species (ROS) production and cell apoptosis & necrosis percentage. We also have checked the mitochondrial structure with transmission electron microscope (TEM), and mitochondrial function using Tetramethyl rhodamine, ethyl ester staining (TMRE). NDUFB6, SDHC, and ATP5F1 were the essential mitochondrial genes involved in the ROS production and ATP production. Immunocytochemistry (ICC) and real-time polymerase chain reaction (qPCR) were implemented to check the regulations of these related genes.


Assuntos
Magnésio , Titânio , Humanos , Osteoblastos , Estresse Oxidativo , Próteses e Implantes , Titânio/toxicidade
7.
Mater Sci Eng C Mater Biol Appl ; 108: 110478, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923949

RESUMO

A semi-degradable Ti + Mg composite with superior compression and cytotoxicity properties have been successfully fabricated using ink jet 3D printing followed by capillary mediated pressureless infiltration technique targeting orthopaedic implant applications. The composite exhibited low modulus (~5.2 GPa) and high ultimate compressive strength (~418 MPa) properties matching that of the human cortical bone. Ti + Mg composites with stronger 3D interconnected open-porous Ti networks are possible to be fabricated via 3D printing. Corrosion rate of samples measured through immersion testing using 0.9%NaCl solution at 37 °C indicate almost negligible corrosion rate for porous Ti (~1.14 µm/year) and <1 mm/year for Ti + Mg composites for 5 days of immersion, respectively. The composite significantly increased the SAOS-2 osteoblastic bone cell proliferation rate when compared to the 3D printed porous Ti samples and the increase is attributed to the exogenous Mg2+ ions originating from the Ti + Mg samples. The cell viability results indicated absent to mild cytotoxicity. An attempt is made to discuss the key considerations for net-shape fabrication of Ti + Mg implants using ink jet 3D printing followed by infiltration approach.


Assuntos
Magnésio/química , Teste de Materiais , Osteoblastoma/tratamento farmacológico , Impressão Tridimensional , Titânio/química , Materiais Biocompatíveis , Osso e Ossos/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Força Compressiva , Corrosão , Módulo de Elasticidade , Humanos , Microscopia Eletrônica de Varredura , Osteoblastoma/patologia , Porosidade , Pressão , Próteses e Implantes , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...