Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121513, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909574

RESUMO

Situated in the north of the Qinghai-Tibet Plateau, the Qaidam Basin experiences limited precipitation and significant evaporation. Despite these conditions, it stands out as one of the most densely distributed lakes in China. The formation of these lakes is controversial: whether the lake water primarily originates from local precipitation or external water sources. To address this issue, this paper explores the recharge sources of lakes in the Qaidam Basin and the circulation patterns of groundwater from a remote sensing perspective. Based on deep learning networks, we optimized the soft object regions of the Object-Contextual Representations Network (OCRNet) and proposed the Remote·Sensing Adaptive-Improved OCRNet (RSA-IOCRNet). Compared with seven other networks, RSA-IOCRNet obtained better experimental results and was used to construct an area sequence of 16 major lakes in the Qaidam Basin. Combined with multi-source data, the comprehensive analysis indicates no significant correlation between climatic factors and lake changes, while an obvious correlation between lakes and groundwater changes in the eastern Qaidam, consisting with the results of the field survey. Deep-circulating groundwater recharges numerous Qaidam lakes through upwelling from fault zones, such as Gasikule Lake and Xiaochaidan Lake. Groundwater in the Qaidam Basin is more depleted in hydrogen-oxygen isotope characteristics than surface water in the basin, but similar to some river water in the endorheic Tibetan Plateau. This indicates that Tibetan seepage water, estimated at approximately 540 billion m3/a, is transported through the Qaidam Basin via deep circulation. Moreover, it rises to recharge the groundwater and lakes within this basin through fracture zones, extending to various arid and semi-arid regions such as Taitema Lake. This work provides a new perspective on the impact of deep groundwater on lakes and water circulation in these areas.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Lagos , Tecnologia de Sensoriamento Remoto , Água Subterrânea/análise , Água Subterrânea/química , Monitoramento Ambiental/métodos , China , Tibet
2.
Pharmaceutics ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38675151

RESUMO

We have developed an ovarian cancer-targeted drug delivery system based on a follicle-stimulating hormone receptor (FSHR) peptide. The lipophilic chemotherapeutic drug SN38 and the photosensitizer IR820 were loaded into the phospholipid bilayer of liposomes. The combination of chemotherapy and phototherapy has become a promising strategy to improve the therapeutic effect of chemotherapy drugs on solid tumors. IR820 can be used for photodynamic therapy (PDT), effectively converting near-infrared light (NIR) into heat and producing reactive oxygen species (ROS), causing damage to intracellular components and leading to cell death. In addition, PDT generates heat in near-infrared, thereby enhancing the sensitivity of tumors to chemotherapy drugs. FSH liposomes loaded with SN38 and IR820 (SN38/IR820-Lipo@FSH) were prepared using thin-film hydration-sonication. FSH peptide binding was analyzed using 1H NMR spectrum and Maldi-Tof. The average size and zeta potential of SN38/IR820-Lipo@FSH were 105.1 ± 1.15 nm (PDI: 0.204 ± 0.03) and -27.8 ± 0.42 mV, respectively. The encapsulation efficiency of SN38 and IR820 in SN38/IR820-Lipo@FSH liposomes were 90.2% and 91.5%, respectively, and their release was slow in vitro. FSH significantly increased the uptake of liposomes, inhibited cell proliferation, and induced apoptosis in A2780 cells. Moreover, SN38/IR820-Lipo@FSH exhibited better tumor-targeting ability and anti-ovarian cancer activity in vivo when compared with non-targeted SN38/IR820-Lipo. The combination of chemotherapy and photodynamic treatment based on an FSH peptide-targeted delivery system may be an effective approach to treating ovarian cancer.

3.
Nanomaterials (Basel) ; 14(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38607092

RESUMO

Colorectal cancer (CRC) is a common malignant tumor, and traditional treatments include surgical resection and radiotherapy. However, local recurrence, distal metastasis, and intestinal obstruction are significant problems. Oral nano-formulation is a promising treatment strategy for CRC. This study introduces physiological and environmental factors, the main challenges of CRC treatment, and the need for a novel oral colon-targeted drug delivery system (OCDDS). This study reviews the research progress of controlled-release, responsive, magnetic, targeted, and other oral nano-formulations in the direction of CRC treatment, in addition to the advantages of oral colon-targeted nano-formulations and concerns about the oral delivery of related therapeutic agents to inspire related research.

4.
J Control Release ; 369: 420-443, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575075

RESUMO

Wound healing involves distinct phases, including hemostasis, inflammation, proliferation, and remodeling, which is a complex and dynamic process. Conventional preparations often fail to meet multiple demands and provide prompt information about wound status. Here, a pH/ROS dual-responsive hydrogel (OHA-PP@Z-CA@EGF) was constructed based on oxidized hyaluronic acid (OHA), phenylboronic acid-grafted ε-polylysine (PP), chlorogenic acid (CA)-loaded ZIF-8 (Z-CA), and epidermal growth factor (EGF), which possesses intrinsic antibacterial, antioxidant, and angiogenic capacities. Due to the Schiff base and Phenylboronate ester bonds, the hydrogel exhibited excellent mechanical properties, strong adhesion, good biodegradability, high biocompatibility, stable rheological properties, and self-healing ability. Moreover, introducing Z-CA as an initiator and nanofiller led to the additional cross-linking of hydrogel through coordination bonds, which further improved the mechanical properties and antioxidant capabilities. Bleeding models of liver and tail amputations demonstrated rapid hemostatic properties of the hydrogel. Besides, the hydrogel regulated macrophage phenotypes via the NF-κB/JAK-STAT pathways, relieved oxidative stress, promoted cell migration and angiogenesis, and accelerated diabetic wound healing. The hydrogel also enabled real-time monitoring of the wound healing stages by colorimetric detection. This multifunctional hydrogel opens new avenues for the treatment and management of full-thickness diabetic wounds.


Assuntos
Ácido Clorogênico , Hidrogéis , Macrófagos , Nanocompostos , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Ácido Clorogênico/administração & dosagem , Ácido Clorogênico/química , Ácido Clorogênico/farmacologia , Hidrogéis/química , Nanocompostos/química , Nanocompostos/administração & dosagem , Células RAW 264.7 , Camundongos , Macrófagos/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/administração & dosagem , Masculino , Fenótipo , Ratos Sprague-Dawley , Polilisina/química , Ácido Hialurônico/química
5.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260691

RESUMO

Tissue homeostasis is controlled by cellular circuits governing cell growth, organization, and differentation. In this study we identify previously undescribed cell-to-cell communication that mediates information flow from mechanosensitive pleural mesothelial cells to alveolar-resident stem-like tuft cells in the lung. We find mesothelial cells to express a combination of mechanotransduction genes and lineage-restricted ligands which makes them uniquely capable of responding to tissue tension and producing paracrine cues acting on parenchymal populations. In parallel, we describe a large population of stem-like alveolar tuft cells that express the endodermal stem cell markers Sox9 and Lgr5 and a receptor profile making them uniquely sensitive to cues produced by pleural Mesothelium. We hypothesized that crosstalk from mesothelial cells to alveolar tuft cells might be central to the regulation of post-penumonectomy lung regeneration. Following pneumonectomy, we find that mesothelial cells display radically altered phenotype and ligand expression, in a pattern that closely tracks with parenchymal epithelial proliferation and alveolar tissue growth. During an initial pro-inflammatory stage of tissue regeneration, Mesothelium promotes epithelial proliferation via WNT ligand secretion, orchestrates an increase in microvascular permeability, and encourages immune extravasation via chemokine secretion. This stage is followed first by a tissue remodeling period, characterized by angiogenesis and BMP pathway sensitization, and then a stable return to homeostasis. Coupled with key changes in parenchymal structure and matrix production, the cumulative effect is a now larger organ including newly-grown, fully-functional tissue parenchyma. This study paints Mesothelial cells as a key orchestrating cell type that defines the boundary of the lung and exerts critical influence over the tissue-level signaling state regulating resident stem cell populations. The cellular circuits unearthed here suggest that human lung regeneration might be inducible through well-engineered approaches targeting the induction of tissue regeneration and safe return to homeostasis.

6.
Front Public Health ; 10: 863522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35425738

RESUMO

Influenza shares the same putative transmission pathway with coronavirus disease 2019 (COVID-19), and causes tremendous morbidity and mortality annually globally. Since the transmission of COVID-19 in China, a series of non-pharmaceutical interventions (NPIs) against to the disease have been implemented to contain its transmission. Based on the surveillance data of influenza, Search Engine Index, and meteorological factors from 2011 to 2021 in Xi'an, and the different level of emergence responses for COVID-19 from 2020 to 2021, Bayesian Structural Time Series model and interrupted time series analysis were applied to quantitatively assess the impact of NPIs in sequent phases with different intensities, and to estimate the reduction of influenza infections. From 2011 to 2021, a total of 197,528 confirmed cases of influenza were reported in Xi'an, and the incidence of influenza continuously increased from 2011 to 2019, especially, in 2019-2020, when the incidence was up to 975.90 per 100,000 persons; however, it showed a sharp reduction of 97.68% in 2020-2021, and of 87.22% in 2021, comparing with 2019-2020. The highest impact on reduction of influenza was observed in the phase of strict implementation of NPIs with an inclusion probability of 0.54. The weekly influenza incidence was reduced by 95.45%, and an approximate reduction of 210,100 (95% CI: 125,100-329,500) influenza infections was found during the post-COVID-19 period. The reduction exhibited significant variations in the geographical, population, and temporal distribution. Our findings demonstrated that NPIs against COVID-19 had a long-term impact on the reduction of influenza transmission.


Assuntos
COVID-19 , Influenza Humana , Orthomyxoviridae , Teorema de Bayes , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , SARS-CoV-2
7.
J Med Virol ; 94(7): 3121-3132, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35277880

RESUMO

Growing evidence has shown that anti-COVID-19 nonpharmaceutical interventions (NPIs) can support prevention and control of various infectious diseases, including intestinal diseases. However, most studies focused on the short-term mitigating impact and neglected the dynamic impact over time. This study is aimed to investigate the dynamic impact of anti-COVID-19 NPIs on hand, foot, and mouth disease (HFMD) over time in Xi'an City, northwestern China. Based on the surveillance data of HFMD, meteorological and web search data, Bayesian Structural Time Series model and interrupted time series analysis were performed to quantitatively measure the impact of NPIs in sequent phases with different intensities and to predict the counterfactual number of HFMD cases. From 2013 to 2021, a total number of 172,898 HFMD cases were reported in Xi'an. In 2020, there appeared a significant decrease in HFMD incidence (-94.52%, 95% CI: -97.54% to -81.95%) in the first half of the year and the peak period shifted from June to October by a small margin of 6.74% compared to the previous years of 2013 to 2019. In 2021, the seasonality of HFMD incidence gradually returned to the bimodal temporal variation pattern with a significant average decline of 61.09%. In particular, the impact of NPIs on HFMD was more evident among young children (0-3 years), and the HFMD incidence reported in industrial areas had an unexpected increase of 51.71% in 2020 autumn and winter. Results suggested that both direct and indirect NPIs should be implemented as effective public health measures to reduce infectious disease and improve surveillance strategies, and HFMD incidence in Xi'an experienced a significant rebound to the previous seasonality after a prominent decline influenced by the anti-COVID-19 NPIs.


Assuntos
COVID-19 , Doenças Transmissíveis , Doença de Mão, Pé e Boca , Teorema de Bayes , COVID-19/epidemiologia , COVID-19/prevenção & controle , Criança , Pré-Escolar , China/epidemiologia , Doença de Mão, Pé e Boca/epidemiologia , Doença de Mão, Pé e Boca/prevenção & controle , Humanos , Incidência , Estações do Ano
8.
Clin Chim Acta ; 520: 160-167, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34102134

RESUMO

BACKGROUND AND AIMS: We aimed to investigate the association between total bile acid (TBA) concentrations changes during the second and third trimesters and the risk of developing adverse maternal and perinatal outcomes (AMPO). METHODS: A total of 1569 pregnant Chinese women were enrolled. Serum TBA concentrations were measured during the 16-18th and 29-34th weeks of gestation. Logistic regression models were performed. RESULTS: After multivariable adjustment, each standard deviation increase in the TBA concentrations in the second trimester was associated with a 30% (odds ratio [OR] = 1.30, 95% confidence interval [CI]: 1.13, 1.50) increased risk of gestational diabetes mellitus (GDM) and a 22% (OR = 1.22, 95% CI: 1.07, 1.63) increased risk of premature rupture of membranes (PROM). When we compared the highest and lowest quartiles of changes in the TBA Z-scores across the second and third trimesters, the adjusted ORs were 1.84 (95% CI: 1.28, 2.65) for PROM and 1.47 (95% CI: 1.07, 2.28) for macrosomia. CONCLUSION: Elevated serum TBA concentrations during pregnancy were positively associated with increased risks of GDM and PROM. Women with more drastic changes in TBA concentrations across the second and third trimesters were at a higher risk of developing PROM and macrosomia.


Assuntos
Diabetes Gestacional , Complicações na Gravidez , Ácidos e Sais Biliares , China/epidemiologia , Feminino , Macrossomia Fetal , Humanos , Gravidez , Complicações na Gravidez/epidemiologia , Resultado da Gravidez
9.
Langmuir ; 36(31): 9284-9290, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32674576

RESUMO

We reported a controlled synthesis method to obtained carbon spheres with tunable geometry under low ZnCl2 aqueous solution conditions using polytriazine as a precursor. The polytriazine precursor was polymerized by mixing/reaction of 2,6-diaminopyridine and formaldehyde in the presence of a diluted ZnCl2 aqueous system. The obtained nanospheres were then decomposed to adulterate nitrogen porous carbon nanospheres (N-PCNSs) by the decomposition and blistering process at high temperature by degrees. ZnCl2 worked as a solid-template and played the role of a stabilizing and foaming agent in the reaction. The as-prepared N-PCNSs with controllable spherical geometry, large micro-/mesoporous volume and high nitrogen content (∼8.5 wt %) were employed in electric double-layer capacitors that have a good specific capacitance (636 F/g at 1 A/g) and are long lasting. Besides, the N-PCNS delivered a high energy density of 22.1 Wh/Kg at a power density of 500 W/kg.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA