Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Thorac Surg ; 116(6): 1337-1345, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-35952858

RESUMO

BACKGROUND: Neurologic impairments are a significant concern for survivors after pediatric cardiac surgery with cardiopulmonary bypass (CPB). We have previously shown that mesenchymal stromal cell (MSC) delivery through CPB has the potential to mitigate the effects of CPB on neural stem/progenitor cells. This study assessed the dose effects of MSCs. METHODS: Piglets (n = 20) were randomly assigned to 1 of 4 groups: control, CPB, or CPB followed by MSC administration with low and high doses (10 × 106 and 100 × 106 cells per kilogram). We assessed acute dose effect on cell distribution, multiorgan functions, systemic inflammation, microglia activation, and neural stem/progenitor cell activities. RESULTS: By magnetic resonance imaging, approximately 10 times more MSCs were detected within the entire brain after high-dose delivery than after low-dose delivery. No adverse events affecting hemodynamics, various biomarkers, and neuroimaging were detected after high-dose MSC delivery. High-dose MSCs significantly increased circulating levels of interleukin 4 after CPB. Both MSC groups normalized microglia activation after CPB, demonstrating MSC-induced reduction in cerebral inflammation. There was a significant increase in neuroblasts in the subventricular zone in both treatment groups. The thickness of the most active neurogenic area within the subventricular zone was significantly increased after high-dose treatment compared with CPB and low-dose MSCs, suggesting dose-dependent effects on the neurogenic niche. CONCLUSIONS: MSC delivery through CPB is feasible up to 100 × 106 cells per kilogram. MSC treatment during cardiac surgery has the potential to reduce systemic and cerebral inflammation and to modulate responses of an active neurogenic niche to CPB. Further investigation is necessary to assess the long-term effects and to develop a more complete dose-response curve.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Células-Tronco Mesenquimais , Humanos , Criança , Animais , Suínos , Ponte Cardiopulmonar/efeitos adversos , Inflamação/etiologia , Encéfalo
2.
JACC Basic Transl Sci ; 8(12): 1521-1535, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205346

RESUMO

Oxidative/inflammatory stresses due to cardiopulmonary bypass (CPB) cause prolonged microglia activation and cortical dysmaturation, thereby contributing to neurodevelopmental impairments in children with congenital heart disease (CHD). This study found that delivery of mesenchymal stromal cells (MSCs) via CPB minimizes microglial activation and neuronal apoptosis, with subsequent improvement of cortical dysmaturation and behavioral alteration after neonatal cardiac surgery. Furthermore, transcriptomic analyses suggest that exosome-derived miRNAs may be the key drivers of suppressed apoptosis and STAT3-mediated microglial activation. Our findings demonstrate that MSC treatment during cardiac surgery has significant translational potential for improving cortical dysmaturation and neurological impairment in children with CHD.

3.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36422538

RESUMO

Newly diagnosed pancreatic cancer increases year by year, while the prognosis of pancreatic cancer has not been very good. Statin drugs were found to have protective effects against a variety of cancers, but their association with pancreatic cancer remains to be clarified. This study used different pancreatic cancer cell lines and in different animal models to confirm the relationship between simvastatin and pancreatic cancer. Flow cytometry and luciferase-based bioluminescent images were used to investigate the cell cycle and tumor growth changes under simvastatin treatment. Simvastatin decreased the MIA PaCa-2 cells, PANC-1 cells, and BxPC-3 cell viability significantly and may arrest the cell cycle in the G0 phase. During in vivo study, subcutaneously implanted simvastatin pre-treated pancreatic cancer cells and intraperitoneally treated simvastatin continuously demonstrated a slower tumor growth rate and decreased the tumor/body weight ratio significantly. In intravenous implant models, implanted simvastatin-pre-treated BxPC-3 cells and cells treated along with simvastatin significantly decreased the tumor growth curve. Implanting the simvastatin-pre-treated pancreatic cells in the subcutaneous model showed better growth inhibition than the intravenous model. These results suggest simvastatin treatment may relate to different signaling pathways in local growth and metastasis. Pancreatic cancer cells presented different growth patterns in different animal-induced models, which could be important for clinical reference when it comes to the relationship of long-term statin use and pancreatic cancer.

4.
J Anat ; 240(6): 1075-1094, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35048365

RESUMO

Each rectus extraocular muscle in cetaceans divides into two portions: a massive palpebral belly that inserts into the deep surface of the eyelids and a smaller scleral belly that inserts onto the eyeball. While the cetacean palpebral insertions have long been recognized, their homologies and functions remain unclear. To compare cetacean rectus EOM insertions with the global and orbital rectus EOM insertions of other mammals we dissected orbital contents of 20 odontocete species, 2 mysticete species and 18 non-cetacean species, both aquatic and terrestrial. Four cetacean species were also examined with magnetic resonance imaging (MRI). All four rectus muscles in cetaceans had well-developed palpebral bellies and insertions. Adjacent palpebral bellies showed varying degrees of fusion, from near independence to near complete fusion. Fusion was most complete towards palpebral insertions and less towards origins. A medial moiety of the superior rectus palpebral belly is likely the levator palpebrae superioris. Smaller but still robust scleral insertions were present on all recti, with the medial rectus (MR) being significantly more muscular than the others. All non-cetacean species examined had recti with distinct global and orbital insertions, the latter generally onto Tenon's capsule. Orbital insertions in pygmy hippopotamus and Florida manatee extended into the deep surfaces of the eyelids, hence qualifying as palpebral insertions. Our results suggest that rectus EOMs of mammals generally have both global and orbital insertions, and that palpebral bellies of cetaceans and other species are modified homologs of the orbital insertions. The presence of palpebral insertions in pygmy hippopotamus and absence in other cetartiodactyls suggests an intermediate condition between terrestrial cetartiodactyls and cetaceans. Palpebral insertions in Florida manatee and reports of their presence in some pinnipeds suggest parallel evolution in multiple aquatic lineages. Various functions of cetacean palpebral recti have been proposed, including eyelid dilators, protection during diving and thermogenesis for warming eye and brain. For further insight into their possible functions, we observed eye movements of captive bottlenose dolphins (Tursiops truncatus) at the U.S. National Aquarium. Our observations showed that in addition to rotation of the eyeball the entire surrounding palpebral region also moves during gaze changes. For example during upward gaze the globe not only rotates in supraduction but translates dorsally as well. It appears the rectus palpebral bellies are responsible for flexing the palpebral structures and thus also translating the globe, while the scleral insertions act directly for ocular rotation. Along with frequent non-conjugate eye movements, the oculomotor mechanics and repertoire of cetaceans are thus quite distinctive. Summarily, axial displacement within the orbit is a major 'eye movement' in cetaceans, with protrusion and retraction mediated by well-developed circular muscles and retractor bulbi respectively. Torsional eye movements driven by elaborate oblique EOMs are likewise significant. The roles of rectus EOMs for ocular rotation via their scleral insertions, especially the highly muscular MR, are for typical supra/infraductions and nasal/temporal ductions. The palpebral bellies accentuate these ductions by translating the globe and surrounding structures in the same direction.


Assuntos
Movimentos Oculares , Músculos Oculomotores , Animais , Cetáceos , Imageamento por Ressonância Magnética , Órbita , Esclera
5.
IEEE Biomed Circuits Syst Conf ; 2022: 198-202, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38544681

RESUMO

Microglia are the resident macrophages in the central nervous system. Brain injuries, such as traumatic brain injury, hypoxia, and stroke, can induce inflammatory responses accompanying microglial activation. The morphology of microglia is notably diverse and is one of the prominent manifestations during activation. In this study, we proposed to detect the activated microglia in immunohistochemistry images by convolutional neural networks (CNN). 2D Iba1 images (40µm) were acquired from a control and a cardiac arrest treated Sprague-Dawley rat brain by a scanning microscope using a 20X objective. The training data were a collection of 54,333 single-cell images obtained from the cortex and midbrain areas, and curated by experienced neuroscientists. Results were compared between CNNs with different architectures, including Resnet18, Resnet50, Resnet101, and support vector machine (SVM) classifiers. The highest model performance was found by Resnet18, trained after 120 epochs with a classification accuracy of 95.5%. The findings indicate a potential application for using CNN in quantitative analysis of microglial morphology over regional difference in a large brain section.

6.
Ann Neurol ; 90(6): 913-926, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34590341

RESUMO

OBJECTIVE: Neurodevelopmental delays and frontal lobe cortical dysmaturation are widespread among children with congenital heart disease (CHD). The subventricular zone (SVZ) is the largest pool of neural stem/progenitor cells in the postnatal brain. Our aim is to determine the effects of cardiopulmonary bypass (CPB) on neurogenesis and cortical maturation in piglets whose SVZ development is similar to human infants. METHODS: Three-week-old piglets (n = 29) were randomly assigned to control (no surgery), mild-CPB (34°C full flow for 60 minutes) and severe-CPB groups (25°C circulatory-arrest for 60 minutes). The SVZ and frontal lobe were analyzed with immunohistochemistry 3 days and 4 weeks postoperatively. MRI of the frontal lobe was used to assess cortical development. RESULTS: SVZ neurogenic activity was reduced up to 4 weeks after both mild and severe CPB-induced insults. CPB also induced decreased migration of young neurons to the frontal lobe, demonstrating that CPB impairs postnatal neurogenesis. MRI 4 weeks after CPB displayed a decrease in gyrification index and cortical volume of the frontal lobe. Cortical fractional anisotropy was increased after severe CPB injury, indicating a prolonged deleterious impact of CPB on cortical maturation. Both CPB-induced insults displayed a significant change in densities of three major inhibitory neurons, suggesting excitatory-inhibitory imbalance in the frontal cortex. In addition, different CPB insults altered different subpopulations of inhibitory neurons. INTERPRETATION: Our results provide novel insights into cellular mechanisms contributing to CHD-induced neurological impairments. Further refinement of CPB hardware and techniques is necessary to improve long-term frontal cortical dysmaturation observed in children with CHD. ANN NEUROL 2021;90:913-926.


Assuntos
Ponte Cardiopulmonar , Lobo Frontal/crescimento & desenvolvimento , Ventrículos Laterais/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Animais , Animais Recém-Nascidos , Lobo Frontal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neurônios/fisiologia , Suínos
7.
Front Neuroanat ; 15: 778769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095430

RESUMO

The olive baboon (Papio anubis) is phylogenetically proximal to humans. Investigation into the baboon brain has shed light on the function and organization of the human brain, as well as on the mechanistic insights of neurological disorders such as Alzheimer's and Parkinson's. Non-invasive brain imaging, including positron emission tomography (PET) and magnetic resonance imaging (MRI), are the primary outcome measures frequently used in baboon studies. PET functional imaging has long been used to study cerebral metabolic processes, though it lacks clear and reliable anatomical information. In contrast, MRI provides a clear definition of soft tissue with high resolution and contrast to distinguish brain pathology and anatomy, but lacks specific markers of neuroreceptors and/or neurometabolites. There is a need to create a brain atlas that combines the anatomical and functional/neurochemical data independently available from MRI and PET. For this purpose, a three-dimensional atlas of the olive baboon brain was developed to enable multimodal imaging analysis. The atlas was created on a population-representative template encompassing 89 baboon brains. The atlas defines 24 brain regions, including the thalamus, cerebral cortex, putamen, corpus callosum, and insula. The atlas was evaluated with four MRI images and 20 PET images employing the radiotracers for [11C]benzamide, [11C]metergoline, [18F]FAHA, and [11C]rolipram, with and without structural aids like [18F]flurodeoxyglycose images. The atlas-based analysis pipeline includes automated segmentation, registration, quantification of region volume, the volume of distribution, and standardized uptake value. Results showed that, in comparison to PET analysis utilizing the "gold standard" manual quantification by neuroscientists, the performance of the atlas-based analysis was at >80 and >70% agreement for MRI and PET, respectively. The atlas can serve as a foundation for further refinement, and incorporation into a high-throughput workflow of baboon PET and MRI data. The new atlas is freely available on the Figshare online repository (https://doi.org/10.6084/m9.figshare.16663339), and the template images are available from neuroImaging tools & resources collaboratory (NITRC) (https://www.nitrc.org/projects/haiko89/).

8.
NMR Biomed ; 34(2): e4451, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33258202

RESUMO

The study of cerebral metabolites relies heavily on detection methods and sample preparation. Animal experiments in vivo require anesthetic agents that can alter brain metabolism, whereas ex vivo experiments demand appropriate fixation methods to preserve the tissue from rapid postmortem degradation. In this study, the metabolic profiles of mouse hippocampi using proton magnetic resonance spectroscopy (1 H-MRS) were compared in vivo and in situ with or without focused beam microwave irradiation (FBMI) fixation. Ten major brain metabolites, including lactate (Lac), N-acetylaspartate (NAA), total choline (tCho), myo-inositol (mIns), glutamine (Gln), glutamate (Glu), aminobutyric acid (GABA), glutathione (GSH), total creatine (tCr) and taurine (Tau), were analyzed using LCModel. After FBMI fixation, the concentrations of Lac, tCho and mIns were comparable with those obtained in vivo under isoflurane, whereas other metabolites were significantly lower. Except for a decrease in NAA and an increase in Tau, all the other metabolites remained stable over 41 hours in FBMI-fixed brains. Without FBMI, the concentrations of mIns (before 2 hours), tCho and GABA were close to those measured in vivo. However, higher Lac (P < .01) and lower NAA, Gln, Glu, GSH, tCr and Tau were observed (P < .01). NAA, Gln, Glu, GSH, tCr and Tau exhibited good temporal stability for at least 20 hours in the unfixed brain, whereas a linear increase of tCho, mIns and GABA was observed. Possible mechanisms of postmortem degradation are discussed. Our results indicate that a proper fixation method is required for in situ detection depending on the targeted metabolites of specific interests in the brain.


Assuntos
Hipocampo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética/métodos , Neuroimagem/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Animais , Água Corporal , Feminino , Hipocampo/metabolismo , Lipídeos/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Micro-Ondas , Mudanças Depois da Morte , Distribuição Aleatória , Fixação de Tecidos/métodos
9.
Nat Nanotechnol ; 15(12): 1053-1064, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33106640

RESUMO

Cancer vaccines hold great promise for improved cancer treatment. However, endosomal trapping and low immunogenicity of tumour antigens usually limit the efficiency of vaccination strategies. Here, we present a proton-driven nanotransformer-based vaccine, comprising a polymer-peptide conjugate-based nanotransformer and loaded antigenic peptide. The nanotransformer-based vaccine induces a strong immune response without substantial systemic toxicity. In the acidic endosomal environment, the nanotransformer-based vaccine undergoes a dramatic morphological change from nanospheres (about 100 nanometres in diameter) into nanosheets (several micrometres in length or width), which mechanically disrupts the endosomal membrane and directly delivers the antigenic peptide into the cytoplasm. The re-assembled nanosheets also boost tumour immunity via activation of specific inflammation pathways. The nanotransformer-based vaccine effectively inhibits tumour growth in the B16F10-OVA and human papilloma virus-E6/E7 tumour models in mice. Moreover, combining the nanotransformer-based vaccine with anti-PD-L1 antibodies results in over 83 days of survival and in about half of the mice produces complete tumour regression in the B16F10 model. This proton-driven transformable nanovaccine offers a robust and safe strategy for cancer immunotherapy.


Assuntos
Antígenos/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Preparações de Ação Retardada/química , Nanosferas/química , Neoplasias/prevenção & controle , Animais , Antígenos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Concentração de Íons de Hidrogênio , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Polímeros/química , Prótons
10.
Heliyon ; 5(1): e01128, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30705983

RESUMO

Previously we demonstrated that muscadine grape skin extract (MSKE), a natural product, significantly inhibited androgen-responsive prostate cancer cell growth by inducing apoptosis through the targeting of survival pathways. However, the therapeutic effect of MSKE on more aggressive androgen-independent prostate cancer remains unknown. This study examined the effects of MSKE treatment in metastatic prostate cancer using complementary PC-3 cells and xenograft model. MSKE significantly inhibited PC-3 human prostate cancer cell tumor growth in vitro and in vivo. The growth-inhibitory effect of MSKE appeared to be through the induction of cell-cycle arrest. This induction was accompanied by a reduction in the protein expression of Hsp40 and cell-cycle regulation proteins, cyclin D1 and NF-kBp65. In addition, MSKE induced p21 expression independent of wild-type p53 induced protein expression. Moreover, we demonstrate that MSKE significantly inhibited cell migration in PC-3 prostate cancer cells. Overall, these results demonstrate that MSKE inhibits prostate tumor growth and migration, and induces cell-cycle arrest by targeting Hsp40 and proteins involved in cell-cycle regulation and proliferation. This suggests that MSKE may also be explored either as a neo-adjuvant or therapeutic for castration resistant prostate cancer.

11.
J Virol ; 93(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651359

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV; also called human herpesvirus 8 [HHV-8]), upon being reactivated, causes serious diseases in immunocompromised individuals. Its reactivation, especially how the cellular regulating mechanisms play roles in KSHV gene expression and viral DNA replication, is not fully understood. In searching for the cellular factors that regulate KSHV gene expression, we found that several histone deacetylases (HDACs) and sirtuins (SIRTs), including HDACs 2, 7, 8, and 11 and SIRTs 4 and 6, repress KSHV ori-Lyt promoter activity. Interestingly, the nuclear protein SIRT6 presents the greatest inhibitory effect on ori-Lyt promoter activity. A more detailed investigation revealed that SIRT6 exerts repressive effects on multiple promoters of KSHV. As a consequence of inhibiting the KSHV promoters, SIRT6 not only represses viral protein production but also inhibits viral DNA replication, as investigated in a KSHV-containing cell line, SLK-iBAC-gfpK52. Depletion of the SIRT6 protein using small interfering RNA could not directly reactivate KSHV from SLK-iBAC-gfpK52 cells but made the reactivation of KSHV by use of a small amount of the reactivator (doxycycline) more effective and enhanced viral DNA replication in the KSHV infection system. We performed DNA chromatin immunoprecipitation (ChIP) assays for SIRT6 in the SLK-iBAC-gfpK52 cell line to determine whether SIRT6 interacts with the KSHV genome in order to exhibit regulatory effects. Our results suggest that SIRT6 interacts with KSHV ori-Lyt and ORF50 promoters. Furthermore, the SIRT6-KSHV DNA interaction is significantly negated by reactivation. Therefore, we identified a cellular regulator, SIRT6, that represses KSHV replication by interacting with KSHV DNA and inhibiting viral gene expression.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a pathogen causing cancer in the immune-deficient population. The reactivation of KSHV from latency is important for it to be carcinogenic. Our finding that SIRT6 has inhibitory effects on KSHV reactivation by interacting with the viral genome and suppressing viral gene expression is important because it might lead to a strategy of interfering with KSHV reactivation. Overexpression of SIRT6 repressed the activities of several KSHV promoters, leading to reduced gene expression and DNA replication by KSHV in a KSHV bacterial artificial chromosome-containing cell line. Depletion of SIRT6 favored reactivation of KSHV from SLK-iBACV-gfpK52 cells. More importantly, we reveal that SIRT6 interacts with KSHV DNA. Whether the interaction of SIRT6 with KSHV DNA occurs at a global level will be further studied in the future.


Assuntos
Herpesvirus Humano 8/genética , Proteínas Imediatamente Precoces/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virologia , Sirtuínas/metabolismo , Transativadores/genética , Proteínas Virais/genética , Linhagem Celular , Linhagem Celular Tumoral , Replicação do DNA/genética , DNA Viral/genética , Regulação Viral da Expressão Gênica/genética , Células HEK293 , Humanos , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/genética , Proteínas Repressoras/genética , Latência Viral/genética , Replicação Viral/genética
12.
Mol Pharm ; 15(4): 1724-1728, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29522683

RESUMO

Flurbiprofen, a hydrophobic COX inhibitor, was coordinated axially with oxoplatin to form a new conjugate, cis, cis, trans-[Pt(IV)(NH3)2Cl2(flurbiprofen)2]. The successful synthesis of this new conjugate was confirmed by 1H, 13C, and 195Pt NMR. The potential of this conjugate being reduced to cisplatin and subsequently exerting its DNA cross-linking ability was verified using cyclic voltammetry (CV), HPLC, and mass spectrometry (MS). This conjugate showed markedly higher cytotoxicity on many cancer cell lines than cisplatin, flurbiprofen, and their physical mixture (mole ratio, cisplatin:flurbiprofen = 1:2). This is consistent with the result of an apoptosis-inducing assay. This conjugate spontaneously assembles carrier-free nanoparticles in aqueous solution, which is confirmed by DLS, TEM, SEM, and AFM, and thus facilitates cellular uptake and markedly improves its cytotoxicity and apoptosis-inducing ability in vitro.


Assuntos
Antineoplásicos/química , Transporte Biológico/efeitos dos fármacos , Citotoxinas/química , Nanoestruturas/química , Platina/química , Pró-Fármacos/química , Apoptose/efeitos dos fármacos , Bioensaio/métodos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/métodos , Flurbiprofeno/química , Humanos , Espectrometria de Massas/métodos , Nanopartículas/química , Água/química
13.
Adv Sci (Weinh) ; 4(12): 1700229, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29270336

RESUMO

Organic dyes generally suffer from small Stokes shift that usually leads to self-quenching and -gaining errors during the fluorescent imaging process. Here, a through-bond energy transfer (TBET) cassette is developed with large Stokes shift to pursue precise cell imaging. The TBET is constructed by covalently conjugated tetraphenylethene (acts as donor) and rhodamine (acceptor) through an acetylene bond. The constructed TBET cassette distinctly behaves as dual-Stokes shifts, including a large pseudo-Stokes shift caused by energy transfer, from donor's absorption to acceptor's emission (up to 260 nm) and a smaller Stokes shift of acceptor molecules itself. Due to the intrinsic dual-Stokes shifts, TBET cassette exhibits specific "dual distinct absorbances, single shared emission" properties, which can be excitated under two different laser channels. By colocalization of the imaging readouts of these two channels, the precisely "double checked" fluorescent imaging is achieved in living cells.

14.
J Am Heart Assoc ; 6(8)2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28862938

RESUMO

BACKGROUND: Newly developed white matter (WM) injury is common after cardiopulmonary bypass (CPB) in severe/complex congenital heart disease. Fractional anisotropy (FA) allows measurement of macroscopic organization of WM pathology but has rarely been applied after CPB. The aims of our animal study were to define CPB-induced FA alterations and to determine correlations between these changes and cellular events after congenital heart disease surgery. METHODS AND RESULTS: Normal porcine WM development was first assessed between 3 and 7 weeks of age: 3-week-old piglets were randomly assigned to 1 of 3 CPB-induced insults. FA was analyzed in 31 WM structures. WM oligodendrocytes, astrocytes, and microglia were assessed immunohistologically. Normal porcine WM development resembles human WM development in early infancy. We found region-specific WM vulnerability to insults associated with CPB. FA changes after CPB were also insult dependent. Within various WM areas, WM within the frontal cortex was susceptible, suggesting that FA in the frontal cortex should be a biomarker for WM injury after CPB. FA increases occur parallel to cellular processes of WM maturation during normal development; however, they are altered following surgery. CPB-induced oligodendrocyte dysmaturation, astrogliosis, and microglial expansion affect these changes. FA enabled capturing CPB-induced cellular events 4 weeks postoperatively. Regions most resilient to CPB-induced FA reduction were those that maintained mature oligodendrocytes. CONCLUSIONS: Reducing alterations of oligodendrocyte development in the frontal cortex can be both a metric and a goal to improve neurodevelopmental impairment in the congenital heart disease population. Studies using this model can provide important data needed to better interpret human imaging studies.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Diferenciação Celular , Lobo Frontal/patologia , Leucoencefalopatias/etiologia , Oligodendroglia/patologia , Substância Branca/patologia , Fatores Etários , Animais , Anisotropia , Astrócitos/patologia , Biomarcadores/metabolismo , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/metabolismo , Imuno-Histoquímica , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/metabolismo , Leucoencefalopatias/patologia , Microglia/patologia , Modelos Animais , Oligodendroglia/metabolismo , Sus scrofa , Fatores de Tempo , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo
15.
Nanoscale ; 9(38): 14347-14356, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28731112

RESUMO

Carrier-free nanodrugs formulated from the supramolecular self-assembly of pure drug molecules have emerged as an innovative and promising strategy for tumor therapy. We report herein a new and simple method to directly assemble a small hydrophobic anticancer drug, 10-hydroxycamptothecin (HCPT), with a photosensitizer chlorin e6 (Ce6) to form stable, discrete nanorods (NRs), which not only circumvent the extreme hydrophobicity of HCPT but also incorporate two different modalities into one delivery system for combination therapy. Different ratios of HCPT to Ce6 were evaluated to afford the optimal nanoformulation. The as-prepared HCPT/Ce6 NRs were fully characterized, indicating a relatively uniform size of about 360 nm in length and 135 nm in width, and a surface charge of about -33 mV. Efficient internalization of the NRs by cancer cells was observed by using a confocal microscope and the generation of singlet oxygen species arising from the NRs under 655 nm laser irradiation was detected by DCFH-DA. As a result, very potent in vitro efficacy against several kinds of cancer cell lines was achieved through chemo-photodynamic dual therapy. The in vivo tumor suppression effect of HCPT/Ce6 NRs was verified on a subcutaneous xenograft mouse model, achieving almost complete inhibition of the tumor growth, which may benefit from the superiority of nanomedicine and combination therapy. The rationale of this facile and green strategy for carrier-free nanodrug formulation via the self-assembly approach might provide new opportunities for the development of combinatorial therapeutics for tumors.


Assuntos
Camptotecina/análogos & derivados , Nanotubos/química , Neoplasias Experimentais/tratamento farmacológico , Fotoquimioterapia , Porfirinas/química , Células A549 , Animais , Camptotecina/química , Linhagem Celular Tumoral , Clorofilídeos , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Radiossensibilizantes/química , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Biomed Res Int ; 2017: 7929286, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28752098

RESUMO

Recombinant immunotoxins (RITs) refer to a group of recombinant protein-based therapeutics, which consists of two components: an antibody variable fragment or a specific ligand that allows RITs to bind specifically to target cells and an engineered toxin fragment that kills the target cells upon internalization. To date, over 1,000 RITs have been generated and significant success has been achieved in the therapy of hematological malignancies. However, the immunogenicity and off-target toxicities of RITs remain as significant barriers for their application to solid tumor therapy. A group of RITs have also been generated for the treatment of glioblastoma multiforme, and some have demonstrated evidence of tumor response and an acceptable profile of toxicity and safety in early clinical trials. Different from other solid tumors, how to efficiently deliver the RITs to intracranial tumors is more critical and needs to be solved urgently. In this article, we first review the design and expression of RITs, then summarize the key findings in the preclinical and clinical development of RIT therapy of glioblastoma multiforme, and lastly discuss the specific issues that still remain to forward RIT therapy to clinical practice.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Imunotoxinas/uso terapêutico , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Ensaios Clínicos como Assunto , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Imunotoxinas/química , Imunotoxinas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico
17.
ACS Appl Mater Interfaces ; 9(20): 16900-16912, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28463476

RESUMO

Vitamin E derivatives possess many essential features for drug-delivery applications, such as biocompatibility, stability, improvement of water solubility of hydrophobic compounds, anticancer activity, and the ability to overcome multidrug resistance (MDR). Herein, vitamin E derivatives are used to overcome MDR through a combined P-glycoprotein (P-gp) inhibition and mitochondrial impairment strategy. A novel nanomicellar drug-delivery system as a carrier for doxorubicin (DOX) was developed, in which d-α-tocopheryl polyethylene glycol 1000 succinate was used as a P-gp inhibitor, α-tocopheryl succinate was introduced as a mitochondrial disrupting agent, and d-α-tocopheryl polyethylene glycol 2000 succinate was used as the main building block of micelles. The optimal ratio between the components of the nanocarrier was determined. The resultant DOX-loaded mixed micelles exhibited a suitable size of 52.08 nm, high drug-loading encapsulation efficiency (>98%), high stability, and pH-dependent drug release. In vitro experiments demonstrated a significantly increased cytotoxic activity of DOX-loaded mixed micelles against resistant MCF-7/Adr cells (45-fold higher than DOX after 48 h of treatment). In vivo studies revealed superior antitumor efficiency with less cardio- and hepatotoxicities of DOX-loaded micelles compared with that of free DOX. These results highlight that the developed DOX-loaded mixed micelles have a promising potential to overcome MDR in chemotherapy for clinical usage.


Assuntos
Nanoestruturas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Linhagem Celular Tumoral , Doxorrubicina , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Micelas , Polietilenoglicóis , Vitamina E
18.
ACS Appl Mater Interfaces ; 9(19): 16006-16014, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28447465

RESUMO

Viruses have evolved to be outstandingly efficient at gene delivery, but their use as vectors is limited by safety risks. Inspired by the structure of viruses, we constructed a virus-mimicking vector (denoted as TR4@siRNA@Tf NCs) with virus-like architecture and infection properties. Composed of a hydrophilic peptide, an aggregation-induced emission (AIE) luminogen, and a lipophilic tail, TR4 imitates the viral capsid and endows the vector with AIE properties as well as efficient siRNA compaction. The outer glycoprotein transferrin (Tf) mimics the viral envelope protein and endows the vector with reduced cytotoxicity as well as enhanced targeting capability. Because of the strong interaction between Tf and transferrin receptors on the cell surface, the Tf coating can accelerate the intracellular release of siRNA into the cytosol. Tf and TR4 are eventually cycled back to the cell membrane. Our results confirmed that the constructed siRNA@TR4@Tf NCs show a high siRNA silencing efficiency of 85% with significantly reduced cytotoxicity. These NCs have comparable transfection ability to natural viruses while avoiding the toxicity issues associated with typical nonviral vectors. Therefore, this proposed virus-like siRNA vector, which integrates the advantages of both viral and nonviral vectors, should find many potential applications in gene therapy.


Assuntos
Nanopartículas , RNA Interferente Pequeno , Receptores da Transferrina , Transfecção , Transferrina
19.
ACS Appl Mater Interfaces ; 9(5): 4425-4432, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28074644

RESUMO

High-efficiency gene transfer and suitably low cytotoxicity are the main goals of gene transfection systems based on nonviral vectors. In addition, it is desirable to track the gene transfer process in order to observe and explain the mechanism. Herein, inspired by viral structures that are optimized for gene delivery, we designed a small-molecule gene vector (TR4) with aggregation-induced emission properties by capping a peptide containing four arginine residues with tetraphenylethene (TPE) and a lipophilic tail. This novel vector can self-assemble with plasmid DNA to form nanofibers in solution with low cytotoxicity, high stability, and high transfection efficiency. pDNA@TR4 complexes were able to transfect a variety of different cell lines, including stem cells. The self-assembly process induces bright fluorescence from TPE, which makes the nanofibers visible by confocal laser scanning microscopy (CLSM). This allows us for the tracking of the gene delivery process.


Assuntos
Nanofibras , Vetores Genéticos , Plasmídeos , Transfecção
20.
ACS Nano ; 10(10): 9637-9645, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27623101

RESUMO

Many theranostic nanomedicines (NMs) have been fabricated by packaging imaging and therapeutic moieties together. However, concerns about their potential architecture instability and pharmacokinetic complexity remain major obstacles to their clinical translation. Herein, we demonstrated the use of CuInS/ZnS quantum dots (ZCIS QDs) as "all-in-one" theranostic nanomedicines that possess intrinsic imaging and therapeutic capabilities within a well-defined nanostructure. ZCIS QDs were exploited for multispectral optical tomography (MSOT) imaging and synergistic PTT/PDT therapy. Due to the intrinsic fluorescence/MSOT imaging ability of the ZCIS QDs, their size-dependent distribution profiles were successfully visualized at tumor sites in vivo. Our results showed that the smaller nanomedicines (ZCIS NMs-25) have longer tumor retention times, higher tumor uptake, and deeper tumor penetration than the larger nanomedicines (ZCIS NMs-80). The ability of ZCIS QDs to mediate photoinduced tumor ablation was also explored. Our results verified that under a single 660 nm laser irradiation, the ZCIS NMs had simultaneous inherent photothermal and photodynamic effects, resulting in high therapy efficacy against tumors. In summary, the ZCIS QDs as "all-in-one" versatile nanomedicines allow high therapeutic efficacy as well as noninvasively monitoring tumor site localization profiles by imaging techniques and thus hold great potential as precision theranostic nanomedicines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...